Chapter 5: Problem 602
A meter stick of mass \(400 \mathrm{gm}\) is pivoted at one end and displaced through an angle 600 the increase in its P.E. is \(\overline{\\{\mathrm{A}\\} 2}\) \(\\{B\\} 3\) \(\\{\) C \(\\}\) Zero \(\\{\mathrm{D}\\} 1\)
Chapter 5: Problem 602
A meter stick of mass \(400 \mathrm{gm}\) is pivoted at one end and displaced through an angle 600 the increase in its P.E. is \(\overline{\\{\mathrm{A}\\} 2}\) \(\\{B\\} 3\) \(\\{\) C \(\\}\) Zero \(\\{\mathrm{D}\\} 1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn HCl molecule the separation between the nuclei of the two atoms is about \(1.27 \mathrm{~A}\left(1 \mathrm{~A}=10^{-10}\right)\). The approximate location of the centre of mass of the molecule is \(-\mathrm{A}\) i \(\wedge\) with respect of Hydrogen atom (mass of CL is \(35.5\) times of mass of Hydrogen \()\) \(\\{\mathrm{A}\\} 1 \mathrm{i}\) \\{B \\} \(2.5 \mathrm{i}\) \\{C \(\\} 1.24 \mathrm{i}\) \\{D \(1.5 \mathrm{i}\)
A cylinder of mass \(5 \mathrm{~kg}\) and radius \(30 \mathrm{~cm}\), and free to rotate about its axis, receives an angular impulse of $3 \mathrm{~kg} \mathrm{M}^{2} \mathrm{~S}^{-1}$ initially followed by a similar impulse after every \(4 \mathrm{sec}\). what is the angular speed of the cylinder 30 sec after initial impulse? The cylinder is at rest initially. \(\\{\mathrm{A}\\} 106.7 \mathrm{rad} \mathrm{S}^{-1}\) \\{B\\} \(206.7 \mathrm{rad} \mathrm{S}^{-1}\) \\{C\\} \(107.6 \mathrm{rad} \mathrm{S}^{-1}\) \\{D \(\\} 207.6 \mathrm{rad} \mathrm{S}^{-1}\)
The moment of inertia of a thin rod of mass \(\mathrm{M}\) and length \(\mathrm{L}\) about an axis passing through the point at a distance $\mathrm{L} / 4$ from one of its ends and perpendicular to the rod is \(\\{\mathrm{A}\\}\left[\left(7 \mathrm{ML}^{2}\right) / 48\right]\) \\{B \\} [ \(\left[\mathrm{ML}^{2} / 12\right]\) \(\\{\mathrm{C}\\}\left[\left(\mathrm{ML}^{2} / 9\right]\right.\) \(\\{\mathrm{D}\\}\left[\left(\mathrm{ML}^{2} / 3\right]\right.\)
A circular disc of radius \(R\) is free to oscillate about an axis passing through a point on its rim and perpendicular to its plane. The disc is turned through an angle of \(60 ?\) and released. Its angular velocity when it reaches the equilibrium position will be \(\\{\mathrm{A}\\} \sqrt{(\mathrm{g} / 3 \mathrm{R})}\) \(\\{\mathrm{B}\\} \sqrt{(2 \mathrm{~g} / 3 \mathrm{R})}\) \(\\{\mathrm{C}\\} \sqrt{(2 \mathrm{~g} / \mathrm{R})}\) \(\\{\mathrm{D}\\} 2 \sqrt{(2 \mathrm{~g} / \mathrm{R})}\)
Let I be the moment of inertia of a uniform square plate about an axis \(\mathrm{AB}\) that passes through its centre and is parallel to two of its sides \(\mathrm{CD}\) is a line in the plane of the plate that passes through the centre of the plate and makes an angle of \(\theta\) with \(\mathrm{AB}\). The moment of inertia of the plate about the axis \(\mathrm{CD}\) is then equal to.... \(\\{\mathrm{A}\\} \mathrm{I}\) \(\\{B\\} I \sin ^{2} \theta\) \(\\{C\\} I \cos ^{2} \theta\) \(\\{\mathrm{D}\\} I \cos ^{2}(\theta / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.