Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a bicycle the radius of rear wheel is twice the radius of front wheel. If \(\mathrm{r}_{\mathrm{F}}\) and \(\mathrm{r}_{\mathrm{r}}\) are the radius, \(\mathrm{v}_{\mathrm{F}}\) and \(\mathrm{v}_{\mathrm{r}}\) are speed of top most points of wheel respectively then... \(\\{\mathrm{A}\\} \mathrm{v}_{\mathrm{r}}=2 \mathrm{v}_{\mathrm{F}}\) $\\{\mathrm{B}\\} \mathrm{v}_{\mathrm{F}}=2 \mathrm{v}_{\mathrm{r}} \quad\\{\mathrm{C}\\} \mathrm{v}_{\mathrm{F}}=\mathrm{v}_{\mathrm{r}}$ \(\\{\mathrm{D}\\} \mathrm{v}_{\mathrm{F}}>\mathrm{v}_{\mathrm{r}}\)

Short Answer

Expert verified
The correct answer is option A: \(v_r = 2v_F\).

Step by step solution

01

Write down the given information

We are given the following: 1. The radius of the rear wheel is twice the radius of the front wheel: \(r_r = 2r_F\) 2. The speeds of the top points of the wheels are \(v_F\) and \(v_r\).
02

Find the relationship between the linear and angular velocities of the two wheels

To find the relationship between the wheels' speeds, we will use the formula connecting linear and angular velocity: \(v = r\omega\), where \(v\) is the linear velocity, \(r\) is the radius, and \(\omega\) is the angular velocity. For the front wheel, we have: \[v_F = r_F \omega_F\] For the rear wheel, we have: \[v_r = r_r \omega_r\]
03

Use the given information to relate the angular velocities

Since the radius of the rear wheel is twice the radius of the front wheel, we can create an expression for the angular velocities in terms of linear velocities: \[\omega_F = \frac{v_F}{r_F}\] and \[\omega_r = \frac{v_r}{r_r} = \frac{v_r}{2r_F}\] Now, note that both the wheels are attached to the same bicycle, which means they will always be in contact with the ground. Hence, their angular velocities will be equal: \[\omega_F = \omega_r\]
04

Solve for the relationship between the linear velocities

Substitute the expressions for \(\omega_F\) and \(\omega_r\) from Step 3 into the equation \(\omega_F = \omega_r\): \[\frac{v_F}{r_F} = \frac{v_r}{2r_F}\] Now, solve for the relationship between \(v_F\) and \(v_r\): \(v_F = \frac{1}{2}v_r\) Which is equivalent to: \(v_r = 2v_F\)
05

Identify the correct answer

Comparing our result with the given options, we find that our result matches option A: \(v_r = 2v_F\) Hence, the correct answer is option A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Statement \(-1\) - Two cylinder one hollow and other solid (wood) with the same mass and identical dimensions are simultaneously allowed to roll without slipping down an inclined plane from the same height. The hollow will reach the bottom of inclined plane first. Statement \(-2-\mathrm{By}\) the principle of conservation of energy, the total kinetic energies of both the cylinders are identical when they reach the bottom of the incline. \(\\{\mathrm{A}\\}\) Statement \(-1\) is correct (true), Statement \(-2\) is true and Statement- 2 is correct explanation for Statement \(-1\) \\{B \\} Statement \(-1\) is true, statement \(-2\) is true but statement- 2 is not the correct explanation four statement \(-1\). \\{C\\} Statement - 1 is true, statement- 2 is false \\{D \(\\}\) Statement- 2 is false, statement \(-2\) is true

A circular disc of radius \(\mathrm{R}\) is removed from a bigger disc of radius \(2 \mathrm{R}\). such that the circumferences of the disc coincide. The centre of mass of the remaining portion is \(\alpha R\) from the centre of mass of the bigger disc. The value of \(\alpha\) is. \(\\{\mathrm{A}\\} 1 / 2\) \\{B \\} \(1 / 6\) \\{C\\} \(1 / 4\) \(\\{\mathrm{D}\\}[(-1) / 3]\)

Statement \(-1\) -If the cylinder rolling with angular speed- w. suddenly breaks up in to two equal halves of the same radius. The angular speed of each piece becomes \(2 \mathrm{w}\). Statement \(-2\) - If no external torque outs, the angular momentum of the system is conserved. \(\\{\mathrm{A}\\}\) Statement \(-1\) is correct (true), Statement \(-2\) is true and Statement- 2 is correct explanation for Statement \(-1\) \(\\{\mathrm{B}\\}\) Statement \(-1\) is true, statement \(-2\) is true but statement- 2 is not the correct explanation four statement \(-1 .\) \(\\{\mathrm{C}\\}\) Statement \(-1\) is true, statement- 2 is false \\{D \(\\}\) Statement- 2 is false, statement \(-2\) is true

A cord is wound round the circumference of wheel of radius r. the axis of the wheel is horizontal and moment of inertia about it is I A weight \(\mathrm{mg}\) is attached to the end of the cord and falls from the rest. After falling through the distance \(\mathrm{h}\). the angular velocity of the wheel will be.... \(\\{B\\}\left[2 m g h /\left(I+m r^{2}\right)\right]\) $\\{\mathrm{C}\\}\left[2 \mathrm{mgh} /\left(\mathrm{I}+\mathrm{mr}^{2}\right)\right]^{1 / 2}$ \(\\{\mathrm{D}\\} \sqrt{(2 \mathrm{gh})}\)

A meter stick of mass \(400 \mathrm{gm}\) is pivoted at one end and displaced through an angle 600 the increase in its P.E. is \(\overline{\\{\mathrm{A}\\} 2}\) \(\\{B\\} 3\) \(\\{\) C \(\\}\) Zero \(\\{\mathrm{D}\\} 1\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free