Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One quarter sector is cut from a uniform circular disc of radius \(\mathrm{R}\). This sector has mass \(\mathrm{M}\). It is made to rotate about a line perpendicular to its plane and passing through the centre of the original disc. Its moment of inertia about the axis of rotation is... \(\\{\mathrm{A}\\}(1 / 2) \mathrm{MR}^{2}\) \(\\{\mathrm{B}\\}(1 / 4) \mathrm{MR}^{2}\) \(\\{\mathrm{C}\\}(1 / 8) \mathrm{MR}^{2}\) \\{D \(\\} \sqrt{2} \mathrm{MR}^{2}\)

Short Answer

Expert verified
The moment of inertia of the quarter sector is \(\cfrac{1}{4} MR^2\), which corresponds to answer choice B.

Step by step solution

01

Identify the variables

We are given the radius of the circular disc, R, and the mass of the quarter sector, M.
02

Calculate the moment of inertia of the circular disc

We first calculate the moment of inertia of the complete uniform circular disc, which is given by the equation \(I_{disc} = \cfrac{1}{2}MR^2\), where M is the mass and R is the radius of the disc.
03

Calculate the mass of the original disc

We need to find the mass of the original disc to determine the mass density. Since the quarter sector has mass M, the original disc has a mass of 4M.
04

Calculate the mass density of the disc

We can find the mass density, ρ, of the original disc by dividing the total mass by the total area. The mass density ρ is given by: \[ρ = \cfrac{4M}{πR^2}\]
05

Calculate the moment of inertia of the sector

For the quarter sector, we first calculate the moment of inertia for a small mass element, dm, with respect to the axis of rotation. Then, we will integrate over the entire quarter sector. The mass element dm can be written as: \[dm = ρ \cdot dA\] where dA = r dr dθ, and θ is the angle between the outer radius and the quarter sector. So, dm = \(\frac{4M}{πR^2} rdrdθ\) Now, let's plug dm into the moment of inertia equation: \[dI = r^2 dm = r^2 \cdot \frac{4M}{πR^2} rdrdθ\] Next, we integrate dI to find the moment of inertia I of the quarter sector: \[I_{sector} = \int\int r^2 \cdot \frac{4M}{πR^2} rdrdθ\] For the quarter sector, we integrate from r=0 to R and θ=0 to π/2: \[I_{sector} = \cfrac{4M}{πR^2} \int_{0}^{R} r^3 dr \int_{0}^{\frac{π}{2}} dθ\]
06

Perform the integrations and simplify

Perform the integrations and simplify the expression: \[I_{sector} = \cfrac{4M}{πR^2} \cdot \left[\cfrac{r^4}{4}\right]_{0}^{R} \cdot \left[θ\right]_{0}^{\frac{π}{2}}\] \[I_{sector} = \cfrac{1}{4} MR^2\] The moment of inertia of the quarter sector is (1/4)MR², which corresponds to answer choice B.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The moment of inertia of a meter scale of mass \(0.6 \mathrm{~kg}\) about an axis perpendicular to the scale and passing through \(30 \mathrm{~cm}\) position on the scale is given by (Breath of scale is negligible). \(\\{\mathrm{A}\\} 0.104 \mathrm{kgm}^{2}\) \\{B \(\\} 0.208 \mathrm{kgm}^{2}\) \(\\{\mathrm{C}\\} 0.074 \mathrm{kgm}^{2}\) \(\\{\mathrm{D}\\} 0.148 \mathrm{kgm}^{2}\)

A cylinder of mass \(\mathrm{M}\) has length \(\mathrm{L}\) that is 3 times its radius what is the ratio of its moment of inertia about its own axis and that about an axis passing through its centre and perpendicular to its axis? \(\\{\mathrm{A}\\} 1\) \(\\{\mathrm{B}\\}(1 / \sqrt{3})\) \(\\{\mathrm{C}\\} \sqrt{3}\) \(\\{\mathrm{D}\\}(\sqrt{3} / 2)\)

Match list I with list II and select the correct answer $$ \begin{aligned} &\begin{array}{|l|l|} \hline \text { List-I } & \begin{array}{l} \text { List - II } \\ \text { System } \end{array} & \text { Moment of inertia } \\ \hline \text { (x) A ring about it axis } & \text { (1) }\left(\mathrm{MR}^{2} / 2\right) \\ \hline \text { (y) A uniform circular disc about it axis } & \text { (2) }(2 / 5) \mathrm{MR}^{2} \\ \hline \text { (z) A solid sphere about any diameter } & \text { (3) }(7 / 5) \mathrm{MR}^{2} \\ \hline \text { (w) A solid sphere about any tangent } & \text { (4) } \mathrm{MR}^{2} \\ \cline { 2 } & \text { (5) }(9 / 5) \mathrm{MR}^{2} \\ \hline \end{array}\\\ &\text { Select correct option }\\\ &\begin{array}{|l|l|l|l|l|} \hline \text { Option? } & \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{W} \\\ \hline\\{\mathrm{A}\\} & 2 & 1 & 3 & 4 \\ \hline\\{\mathrm{B}\\} & 4 & 3 & 2 & 5 \\ \hline\\{\mathrm{C}\\} & 1 & 5 & 4 & 3 \\ \hline\\{\mathrm{D}\\} & 4 & 1 & 2 & 3 \\ \hline \end{array} \end{aligned} $$

In a bicycle the radius of rear wheel is twice the radius of front wheel. If \(\mathrm{r}_{\mathrm{F}}\) and \(\mathrm{r}_{\mathrm{r}}\) are the radius, \(\mathrm{v}_{\mathrm{F}}\) and \(\mathrm{v}_{\mathrm{r}}\) are speed of top most points of wheel respectively then... \(\\{\mathrm{A}\\} \mathrm{v}_{\mathrm{r}}=2 \mathrm{v}_{\mathrm{F}}\) $\\{\mathrm{B}\\} \mathrm{v}_{\mathrm{F}}=2 \mathrm{v}_{\mathrm{r}} \quad\\{\mathrm{C}\\} \mathrm{v}_{\mathrm{F}}=\mathrm{v}_{\mathrm{r}}$ \(\\{\mathrm{D}\\} \mathrm{v}_{\mathrm{F}}>\mathrm{v}_{\mathrm{r}}\)

The M.I of a disc of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) about an axis passing through the centre \(\mathrm{O}\) and perpendicular to the plane of disc is \(\left(\mathrm{MR}^{2} / 2\right)\). If one quarter of the disc is removed the new moment of inertia of disc will be..... \(\\{\mathrm{A}\\}\left(\mathrm{MR}^{2} / 3\right)\) \(\\{B\\}\left(M R^{2} / 4\right)\) \(\\{\mathrm{C}\\}(3 / 8) \mathrm{MR}^{2}\) \(\\{\mathrm{D}\\}(3 / 2) \mathrm{MR}^{2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free