Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A wheel rotates with a constant acceleration of $2.0 \mathrm{rad} / \mathrm{sec}^{2}$ If the wheel start from rest. The number of revolution it makes in the first ten seconds will be approximately. \(\\{\mathrm{A}\\} 8\) \\{B \\} 16 \(\\{\mathrm{C}\\} 24\) \(\\{\mathrm{D}\\} 32\)

Short Answer

Expert verified
The number of revolutions made by the wheel in the first 10 seconds is approximately \(\\{B\\} 16\).

Step by step solution

01

Write down relevant equations of motion for constant angular acceleration

There are two main equations that we can use for this problem: 1. Angular displacement equation (final angle, initial angle, initial angular velocity, time, and angular acceleration): \(\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2\) 2. Angular velocity equation (final angular velocity, initial angular velocity, angular acceleration, and time): \(\omega = \omega_0 + \alpha t\) In this problem, we know that the initial angular velocity \(\omega_0 = 0\), the angular acceleration \(\alpha = 2.0 \, \text{rad/sec}^2\), and the time \(t = 10 \, \text{sec}\). We need to find the angular displacement in radians, \(\theta\), to calculate the number of revolutions.
02

Calculate the angular displacement using the first equation of motion

Using the equation \(\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2\), we can substitute our known values and calculate the angular displacement: \(\theta = 0 + 0 \cdot 10 + \frac{1}{2}(2.0) \cdot 10^2\) Calculating this value, we get: \(\theta = 100 \, \text{rad}\)
03

Convert angular displacement in radians to revolutions

Since there are 2π radians in one revolution, we can divide the angular displacement by 2π to get the number of revolutions: Number of revolutions = \(\frac{100 \, \text{rad}}{2π}\) Approximating π as 3.14, we have: Number of revolutions = \(\frac{100}{6.28} \approx 15.9\)
04

Choose the closest answer from the options

From our calculations, the number of revolutions is approximately 15.9. Looking at the answer choices, option B (16) is the closest to our calculated value. Therefore, the answer to this problem is: \(\\{B\\} 16\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In HCl molecule the separation between the nuclei of the two atoms is about \(1.27 \mathrm{~A}\left(1 \mathrm{~A}=10^{-10}\right)\). The approximate location of the centre of mass of the molecule is \(-\mathrm{A}\) i \(\wedge\) with respect of Hydrogen atom (mass of CL is \(35.5\) times of mass of Hydrogen \()\) \(\\{\mathrm{A}\\} 1 \mathrm{i}\) \\{B \\} \(2.5 \mathrm{i}\) \\{C \(\\} 1.24 \mathrm{i}\) \\{D \(1.5 \mathrm{i}\)

A particle of mass \(\mathrm{m}\) slides down on inclined plane and reaches the bottom with linear velocity \(\mathrm{V}\). If the same mass is in the form of ring and rolls without slipping down the same inclined plane. Its velocity will be \(\\{\mathrm{A}\\} \mathrm{V}\) \(\\{\mathrm{B}\\} \sqrt{(2 \mathrm{~V})}\) \(\\{\mathrm{C}\\}(\mathrm{V} / \sqrt{2})\) \(\\{\mathrm{D}\\} 2 \mathrm{~V}\)

A circular disc \(\mathrm{x}\) of radius \(\mathrm{R}\) is made from an iron plate of thickness \(t\). and another disc \(Y\) of radius \(4 R\) is made from an iron plate of thickness \(t / 4\) then the rotation between the moment of inertia \(\mathrm{I}_{\mathrm{x}}\) and \(\mathrm{I}_{\mathrm{y}}\) is \(\\{\mathrm{A}\\} \mathrm{I}_{\mathrm{y}}=64 \mathrm{I}_{\mathrm{x}}\) \(\\{B\\} I_{y}=32 I_{x}\) \(\\{\mathrm{C}\\} \mathrm{I}_{\mathrm{y}}=16 \mathrm{I}_{\mathrm{x}}\) \(\\{\mathrm{D}\\} \mathrm{I}_{\mathrm{y}}=\mathrm{I}_{\mathrm{x}}\)

A constant torque of \(1500 \mathrm{Nm}\) turns a wheel of moment of inertia \(300 \mathrm{~kg} \mathrm{~m}^{2}\) about an axis passing through its centre the angular velocity of the wheel after 3 sec will be.......... $\mathrm{rad} / \mathrm{sec}$ \(\\{\mathrm{A}\\} 5\) \\{B \\} 10 \(\\{C\\} 15\) \(\\{\mathrm{D}\\} 20\)

A wheel is subjected to uniform angular acceleration about its axis. Initially its angular velocity is zero. In the first two second it rotate through an angle \(\theta_{1}\), in the next \(2 \mathrm{sec}\). it rotates through an angle \(\theta_{2}\), find the ratio \(\left(\theta_{2} / \theta_{1}\right)=\) \(\\{\mathrm{A}\\} 1\) \(\\{B\\} 2\) \(\\{\mathrm{C}\\} 3\) \(\\{\mathrm{D}\\} 4\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free