Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two bodies of mass \(1 \mathrm{~kg}\) and \(3 \mathrm{~kg}\) have position vector \((\mathrm{i} \wedge+2 \mathrm{j} \wedge+\mathrm{k} \wedge)\) and $(-3 \mathrm{i}-2 \mathrm{j}+\mathrm{k})$ respectively the centre of mass of this system has a position vector ..... \(\\{\mathrm{A}\\}-2 \mathrm{i} \wedge+2 \mathrm{k} \wedge\) \(\\{B\\}-2 i \wedge-j \wedge+k \wedge\) \(\\{C\\} 2 i \wedge-j \wedge-k \wedge\) \(\\{\mathrm{D}\\}-\mathrm{i} \wedge+\mathrm{j} \wedge+\mathrm{k} \wedge\)

Short Answer

Expert verified
The position vector of the center of mass of this system is \(-2 i \wedge-j \wedge+k \wedge\).

Step by step solution

01

Write down the given information

We have: - Masses: \(m_1 = 1 \mathrm{~kg}\) and \(m_2 = 3 \mathrm{~kg}\) - Position vectors: \(\vec{r}_1 = (\mathrm{i} \wedge+2 \mathrm{j} \wedge+\mathrm{k} \wedge)\) and \(\vec{r}_2 = (-3\mathrm{i}-2 \mathrm{j}+\mathrm{k})\)
02

Calculate the center of mass position vector

Using the formula for the center of mass position vector, we have: $$\vec{R}_{\mathrm{cm}} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$$ Substitute the given values into the formula: $$\vec{R}_{\mathrm{cm}} = \frac{1(\mathrm{i} \wedge+2 \mathrm{j} \wedge+\mathrm{k} \wedge) + 3(-3\mathrm{i}-2 \mathrm{j}+\mathrm{k})}{1+3}$$
03

Simplify the position vector

Now, perform the necessary operations: $$\vec{R}_{\mathrm{cm}} = \frac{1\,\mathrm{i} + 2\,\mathrm{j} + \mathrm{k} - 9\,\mathrm{i} - 6\,\mathrm{j} + 3\,\mathrm{k}}{4}$$ Combine the like terms: $$\vec{R}_{\mathrm{cm}} = \frac{-8\,\mathrm{i} - 4\,\mathrm{j} + 4\,\mathrm{k}}{4}$$ Divide each term by the denominator (4): $$\vec{R}_{\mathrm{cm}} = -2\,\mathrm{i} - \mathrm{j} + \mathrm{k}$$
04

Compare to the given options

We now compare our result to the given options: A) \(-2 \mathrm{i} \wedge+2 \mathrm{k} \wedge\) B) \(-2 i \wedge-j \wedge+k \wedge\) C) \(2 i \wedge-j \wedge-k \wedge\) D) \(-\mathrm{i} \wedge+\mathrm{j} \wedge+\mathrm{k} \wedge\) Our result matches option B: $$\vec{R}_{\mathrm{cm}} = -2 i \wedge-j \wedge+k \wedge$$ So, the position vector of the center of mass of this system is given by option B.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A mass \(\mathrm{m}\) is moving with a constant velocity along the line parallel to the \(\mathrm{x}\) -axis, away from the origin. Its angular momentum with respect to the origin \(\\{\mathrm{A}\\}\) Zero \\{B \\} remains constant \(\\{\mathrm{C}\\}\) goes on increasing \\{D\\} goes on decreasing

If distance of the earth becomes three times that of the present distance from the sun then number of days in one year will be .... \(\\{\mathrm{A}\\}[365 \times 3]\) \(\\{\mathrm{B}\\}[365 \times 27]\) \(\\{\mathrm{C}\\}[365 \times(3 \sqrt{3})]\) \(\\{\mathrm{D}\\}[365 /(3 \sqrt{3})]\)

Match list I with list II and select the correct answer $$ \begin{aligned} &\begin{array}{|l|l|} \hline \text { List-I } & \begin{array}{l} \text { List - II } \\ \text { System } \end{array} & \text { Moment of inertia } \\ \hline \text { (x) A ring about it axis } & \text { (1) }\left(\mathrm{MR}^{2} / 2\right) \\ \hline \text { (y) A uniform circular disc about it axis } & \text { (2) }(2 / 5) \mathrm{MR}^{2} \\ \hline \text { (z) A solid sphere about any diameter } & \text { (3) }(7 / 5) \mathrm{MR}^{2} \\ \hline \text { (w) A solid sphere about any tangent } & \text { (4) } \mathrm{MR}^{2} \\ \cline { 2 } & \text { (5) }(9 / 5) \mathrm{MR}^{2} \\ \hline \end{array}\\\ &\text { Select correct option }\\\ &\begin{array}{|l|l|l|l|l|} \hline \text { Option? } & \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{W} \\\ \hline\\{\mathrm{A}\\} & 2 & 1 & 3 & 4 \\ \hline\\{\mathrm{B}\\} & 4 & 3 & 2 & 5 \\ \hline\\{\mathrm{C}\\} & 1 & 5 & 4 & 3 \\ \hline\\{\mathrm{D}\\} & 4 & 1 & 2 & 3 \\ \hline \end{array} \end{aligned} $$

A circular disc of radius \(\mathrm{R}\) and thickness \(\mathrm{R} / 6\) has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and re-casted in to a solid sphere. The moment of inertia of the sphere about its diameter as axis of rotation is \(\ldots\) \(\\{\mathrm{A}\\} \mathrm{I}\) \(\\{\mathrm{B}\\}(2 \mathrm{I} / 8)\) \(\\{\mathrm{C}\\}(\mathrm{I} / 5)\) \(\\{\mathrm{D}\\}(\mathrm{I} / 10)\)

A circular disc of radius \(\mathrm{R}\) is removed from a bigger disc of radius \(2 \mathrm{R}\). such that the circumferences of the disc coincide. The centre of mass of the remaining portion is \(\alpha R\) from the centre of mass of the bigger disc. The value of \(\alpha\) is. \(\\{\mathrm{A}\\} 1 / 2\) \\{B \\} \(1 / 6\) \\{C\\} \(1 / 4\) \(\\{\mathrm{D}\\}[(-1) / 3]\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free