Consider a two-particle system with the particles having masses
\(\mathrm{M}_{1}\), and \(\mathrm{M}_{2}\). If the first particle is pushed
towards the centre of mass through a distance \(d\), by what distance should the
second particle be moved so as to keep the centre of mass at the same
position?
$\\{\mathrm{A}\\}\left[\left(\mathrm{M}_{1} \mathrm{~d}\right)
/\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)\right]$
$\\{\mathrm{B}\\}\left[\left(\mathrm{M}_{2} \mathrm{~d}\right)
/\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)\right]$
$\\{\mathrm{C}\\}\left[\left(\mathrm{M}_{1} \mathrm{~d}\right)
/\left(\mathrm{M}_{2}\right)\right]$
$\\{\mathrm{D}\\}\left[\left(\mathrm{M}_{2} \mathrm{~d}\right)
/\left(\mathrm{M}_{1}\right)\right]$