Chapter 4: Problem 535
A force \(\mathrm{F}=\mathrm{kx}\) (where \(\mathrm{k}\) is positive constant) is acting on a particle. Match column-I and column-II, regarding work done in displacing the particle. $$ \begin{array}{|l|l|} \hline \text { Column - i } & \text { Column - ii } \\ \hline \text { (a) From } \mathrm{x}=-4 \text { to } \mathrm{x}=-2 & \text { (P) Positive } \\ \hline \text { (b) From } \mathrm{x}=-2 \text { to } \mathrm{x}=-4 & \text { (Q) zero } \\ \hline \text { (c) From } \mathrm{x}=-2 \text { to } \mathrm{x}=+2 & \text { (R) negative } \\ \hline \end{array} $$ (A) \(\mathrm{a}-\mathrm{R}, \mathrm{b}-\mathrm{P}, \mathrm{c}-\mathrm{Q}\) (B) \(a-P, b-Q, c-R\) (C) \(a-R, b-Q, c-P\) (D) \(\mathrm{a}-\mathrm{Q}, \mathrm{b}-\mathrm{P}, \mathrm{c}-\mathrm{R}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.