Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A convex lens of focal length \(f\) produces a real image \(x\) times the size of an object, Then what is the distance of the object from the lens? (A) \((\mathrm{x}+1) \mathrm{f}\) (B) \((\mathrm{x}-1) \mathrm{f}\) (C) \([(\mathrm{x}+1) / \mathrm{x}] \mathrm{f}\) (D) \([(x-1) / x] f\)

Short Answer

Expert verified
The distance of the object from the lens is \( u = \frac{(x-1)f}{x} \).

Step by step solution

01

Write down the lens formula and the magnification formula.

First, write down the lens formula and magnification formula, which will be used together to determine the object's distance from the lens. Lens formula: \( \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \) Magnification formula: \( m = -\frac{v}{u} \)
02

Replace m with x in the magnification formula

Since m = x, we can write the magnification formula using x: \( x = -\frac{v}{u} \)
03

Solve for v in the magnification formula.

Now, solve for v in the magnification formula: \( v = -xu \)
04

Substitute v in the lens formula.

Replace v with the expression found in Step 3 in the lens formula: \( \frac{1}{f} = \frac{1}{-xu} - \frac{1}{u} \)
05

Simplify and solve for u.

Simplify the equation and solve for u: \( \frac{1}{f} = \frac{1-x}{xu} \) Multiplying both sides by f and xu, we get: \( xu = (-x+1)f \) Now, divide both sides by x: \( u = \frac{(-x+1)f}{x} \) Comparing our result with the given options, we find that it matches Option (D). Thus, the distance of the object from the lens is: \( u = \frac{(x-1)f}{x} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A spherical mirror forms an erect image three times the linear size of the object. If the distance between the object and the image is \(80 \mathrm{~cm}\), What is the focal length of the mirror? (A) \(30 \mathrm{~cm}\) (B) \(40 \mathrm{~cm}\) (C) \(-15 \mathrm{~cm}\) (D) \(15 \mathrm{~cm}\)

A convex lens of focal length \(\mathrm{f}\) is placed somewhere in between an object and a screen. The distance between the object and the screen is \(\mathrm{x}\). If the numerical value of the magnification product by the lens is \(\mathrm{m}\), What is the focal length of the lens? (A) \(\left[\mathrm{mx} /(\mathrm{m}-1)^{2}\right]\) (B) \(\left[\mathrm{mx} /(\mathrm{m}+1)^{2}\right]\) (C) \(\left[(m-1)^{2} / \mathrm{m}\right] \mathrm{x}\) (D) \(\left[(\mathrm{m}+1)^{2} / \mathrm{m}\right] \mathrm{x}\)

A thin lens has focal length \(\mathrm{f}\), and its aperture has diameter d. It forms an image of intensity I. Now, the central part of the aperture upto diameter \((\mathrm{d} / 2)\) is blocked by an opaque paper. The focal length and image intensity will change to \(\ldots\) (A) \(\mathrm{f}\) and \((3 \mathrm{I} / 4)\) (B) \((3 \mathrm{f} / 4)\) and \((\mathrm{I} / 2)\) (C) \(\mathrm{f}\) and \((\mathrm{I} / 4)\) (D) \((\mathrm{f} / 2)\) and \((\mathrm{I} / 2)\)

An object is placed at a distance of \((\mathrm{f} / 2)\) the from a convex lens the image will be.... (A) at \(\mathrm{f}\), real and inverted (B) at,\((3 \mathrm{f} / 2)\) real and inverted (C) at one of the foci, virtual and double its size (D) at \(2 \mathrm{f}\), virtual and erect.

A concave lens of focal length \(\mathrm{f}\) forms an image which is n times the size of the object. What is the distance of the object from the lens? (A) \((1+\mathrm{n}) \mathrm{f}\) (B) \((1-\mathrm{n}) \mathrm{f}\) (C) \([(1-\mathrm{n}) / \mathrm{n}] \mathrm{f}\) (D) \([(1+\mathrm{n}) / \mathrm{n}] \mathrm{f}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free