Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The linear momentum \(\mathrm{P}\) of a particle varies with the time as follows. \(P=a+b t^{2}\) Where \(a\) and \(b\) are constants. The net force acting on the particle is (A) Proportional to t (B) Proportional to t \(^{2}\) (C) Zero (D) constant

Short Answer

Expert verified
The net force (F) acting on the particle is proportional to time (t), as found by differentiating the given momentum expression: \(F = \frac{dP}{dt} = 2bt\). Therefore, the correct answer is (A) Proportional to t.

Step by step solution

01

1) Differentiate the Momentum Expression

First, we need to find the time derivative of the momentum expression P = a + b*t^2. To do this, we will apply the power rule of differentiation for each term concerning time: \(\frac{dP}{dt} = \frac{d}{dt}(a + bt^2)\)
02

2) Differentiate the Constants

Since 'a' and 'b' are constants, the derivative of the first term with respect to time is zero: \(\frac{d}{dt}(a) = 0\)
03

3) Differentiate the Second Term

Now, we need to differentiate the second term concerning time: \(\frac{d}{dt}(bt^2)= b\frac{d}{dt}(t^2) = 2bt\)
04

4) Combine the Results

Now, let's combine our results from steps 2 and 3: \(\frac{dP}{dt}= 0 + 2bt = 2bt\)
05

5) Identify the Net Force

We know that the net force acting on the particle (F) is equal to the time derivative of momentum: \(F =\frac{dP}{dt}\) So, substituting our result for the derivative: \(F = 2bt\)
06

6) Final Analysis

Now, we can see that the net force (F) acting on the particle is proportional to time (t) since it is directly proportional to 't' multiplied by a constant '2b'. Consequently, the correct option is: (A) Proportional to t

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The minimum force required to start pushing a body up a rough (coefficient of) inclined plane is \(\mathrm{F}_{1}\). While the minimum force needed to prevent it from sliding down is \(\mathrm{F}_{2}\). If the inclined plane makes an angle \(\theta\) from the horizontal. such that \(\tan \theta=2 \mu\) than the ratio \(\left(\mathrm{F}_{1} / \mathrm{F}_{2}\right)\) is (A) 4 (B) 1 (C) 2 (D) 3

Three Forces \(F_{1}, F_{2}\), and \(F_{3}\) together keep a body in equilibrium. If \(F_{1}=3 \mathrm{~N}\) along the positive \(\mathrm{X}\) - axis, \(\mathrm{F}_{2}=4 \mathrm{~N}\) along the positive Y-axis then the third force \(F_{3}\) is (A) \(5 \mathrm{~N}\) -making an angle \(\theta=\tan ^{-1}(3 / 4)\) with negative \(\mathrm{y}\) -axis (B) \(5 \mathrm{~N}\) -making an angle \(\theta=\tan ^{-1}(4 / 3)\) with negative \(\mathrm{y}\) -axis (C) \(7 \mathrm{~N}\) -making an angle \(\theta=\tan ^{-1}(3 / 4)\) with negative \(\mathrm{y}\) -axis (D) \(7 \mathrm{~N}\) -making an angle \(\theta=\tan ^{-1}(4 / 3)\) with negative \(\mathrm{y}\) -axis

A plate of mass \(\mathrm{M}\) is placed on a horizontal frictionless surface and a body of mass \(m\) is placed on this plate, The coefficient of dynamic friction between this body and the plate is \(\mu\). If a force $2 \mu \mathrm{mg}\(. is applied to the body of mass \)\mathrm{m}$ along the horizontal direction the acceleration of the plate will be (A) \((\mu \mathrm{m} / \mathrm{M}) \mathrm{g}\) (B) \([\mu \mathrm{m} /(\mathrm{M}+\mathrm{m})] \mathrm{g}\) (C) \([(2 \mu \mathrm{m}) / \mathrm{M}] \mathrm{g}\) (D) \([(2 \mu \mathrm{m}) /(\mathrm{M}+\mathrm{m})] \mathrm{g}\)

A car of mass \(1000 \mathrm{~kg}\) travelling at \(32 \mathrm{~m} / \mathrm{s}\) clashes into a rear of a truck of mass \(8000 \mathrm{~kg}\) moving in the same direction with a velocity of \(4 \mathrm{~m} / \mathrm{s}\). After the collision the car bounces with a velocity of \(8 \mathrm{~ms}^{-1}\). The velocity of truck after the impact is \(\mathrm{m} / \mathrm{s}\) (B) 4 (C) 6 (D) 9 (A) 8

An object of mass \(3 \mathrm{~kg}\) is moving with a velocity of $5 \mathrm{~m} / \mathrm{s}\( along a straight path. If a force of \)12 \mathrm{~N}$ is applied for \(3 \mathrm{sec}\) on the object in a perpendicular to its direction of motion. The magnitude of velocity of the particle at the end of $3 \mathrm{sec}\( is \)\mathrm{m} / \mathrm{s}$. (A) (B) 12 (C) 13 (D) 4

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free