Chapter 22: Problem 2777
Screw gauge A has a pitch of \(1 \mathrm{~mm}\) and 50 divis1on on its circular scale screw gauge \(B\) has a pitch of \(0.5 \mathrm{~mm}\) and 100 divisions on its circular scale. If \((\mathrm{L} \times \mathrm{C})\) is least count, then which posibility is true ? What is the parilrility? (A) $2(\mathrm{~L} \times \mathrm{C})_{\mathrm{A}}=(\mathrm{L} \times \mathrm{C})_{\mathrm{B}}$ (B) $(\mathrm{L} \times \mathrm{C})_{\mathrm{A}}=4(\mathrm{~L} \times \mathrm{C})_{\mathrm{B}}$ (C) $(\mathrm{L} \times \mathrm{C})_{\mathrm{A}}=(\mathrm{L} \times \mathrm{C})_{\mathrm{B}}$ (D) $(\mathrm{L} \times \mathrm{C})_{\mathrm{A}}=2(\mathrm{~L} \times \mathrm{C})_{\mathrm{B}}$