Chapter 2: Problem 247
A particle moves on a plane along the path \(\mathrm{y}=\mathrm{Ax}^{3}+\mathrm{B}\) in such a way that \((\mathrm{dx} / \mathrm{dt})=\mathrm{c} . \mathrm{c}, \mathrm{A}, \mathrm{B}\) are constant. Calculate the acceleration of the particle. (A) \(3 \mathrm{Ax} \mathrm{cj} \mathrm{ms}^{-2}\) (B) \(6 \mathrm{Axc}^{2} \hat{\mathrm{j}} \mathrm{ms}^{-2}\) (C) \(3 \mathrm{Axc}^{2} \hat{\mathrm{j}} \mathrm{ms}^{-2}\) (D) \(\left[c \hat{i}+3 A x c^{2} \hat{j}\right] m s^{-2}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.