Chapter 2: Problem 182
The ratio of pathlength and the respective time interval is (A) Mean Velocity (B) Mean speed (C) instantaneous velocity (D) instantaneous speed
Chapter 2: Problem 182
The ratio of pathlength and the respective time interval is (A) Mean Velocity (B) Mean speed (C) instantaneous velocity (D) instantaneous speed
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{A}^{-}+\mathrm{B}^{-}\) is perpendicular to \(\mathrm{A}^{-}\) and \(\left|\mathrm{B}^{-}\right|=2\left|\mathrm{~A}^{-}+\mathrm{B}^{-}\right|\) What is the angle between \(\mathrm{A}^{-}\) and \(\mathrm{B}^{\rightarrow}\) \((\mathrm{A})(\pi / 6)\) (B) \((5 \pi / 6)\) (C) \((2 \pi / 3)\) (D) \((\pi / 3)\)
Which from the following is true? (A) $\cos \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) / \mathrm{AB}\right]$ (B) $\sin \theta=\left[\left(\mathrm{A}^{\rightarrow} \cdot \mathrm{B}^{\rightarrow}\right) / \mathrm{AB}\right]$ (C) $\tan \theta=\left[\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right) /\left(\mathrm{A}^{-}-\mathrm{B}^{-}\right)\right]$ (D) $\cot \theta=\left[\mathrm{AB} /\left(\left|\mathrm{A}^{\rightarrow} \times \mathrm{B}^{\rightarrow}\right|\right)\right]$
$\mathrm{A} \overrightarrow{\mathrm{r}}=2 \mathrm{i} \wedge-\mathrm{j} \wedge+2 \mathrm{k} \wedge\( and \)\mathrm{B}^{\rightarrow}=-\mathrm{i} \wedge-2 \mathrm{j} \wedge+4 \mathrm{k} \wedge$ what is the angle between \(\mathrm{A}^{\rightarrow}\) and \(\mathrm{B}^{\rightarrow}\) (A) \(\cos ^{-1} 0.8888\) (B) \(\cos ^{-1} 0.4444\) (C) \(\sin ^{-1} 0.4444\) (D) \(\sin ^{-1} 0.8888\)
A body is moving in \(\mathrm{x}\) direction with constant acceleration \(\alpha\). Find the difference of the displacement covered by it in nth second and \((\mathrm{n}-1)\) th second. (A) \(\alpha\) (B) \((\alpha / 2)\) (C) \(3 \alpha\) (D) \((3 / 2) \alpha\)
Which from the following is a scalar? (A) Electric current (B) Velocity (C) acceleration (D) Electric field
What do you think about this solution?
We value your feedback to improve our textbook solutions.