Chapter 2: Problem 168
To locate the position of the particle we need ... (A) a frame of reference (B) direction of the particle (C) size of the particle (D) mass of the particle
Chapter 2: Problem 168
To locate the position of the particle we need ... (A) a frame of reference (B) direction of the particle (C) size of the particle (D) mass of the particle
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{y}\) component of \(\mathrm{A} \rightarrow \times \mathrm{B}^{-}\) is. $\mathrm{A}^{\rightarrow}=\mathrm{Ax} \hat{\imath}+\mathrm{Ay} \hat{\mathrm{j}}+\mathrm{A} z \mathrm{k}^{\wedge}$ $\mathrm{B}^{\rightarrow}=\mathrm{Bx} \hat{1}+\mathrm{By} \hat{\jmath}+\mathrm{Bzk}^{\wedge}$ (A) \(A x B y-A y B x\) (B) \(\mathrm{Az} \mathrm{Bx}-\mathrm{AxBz}\) (C) \(\mathrm{AxBz}-\mathrm{AzBx}\) (D) \(\mathrm{AzBy}-\mathrm{AyBz}\)
A cartasian equation of a projectile is given by $\mathrm{y}=2 \mathrm{x}-5 \mathrm{x}^{2}$ Calculate its initial velocity. (A) \(\sqrt{10 \mathrm{~ms}^{-1}}\) (B) \(\sqrt{5 \mathrm{~ms}^{-1}}\) (C) \(\sqrt{2} \mathrm{~ms}^{-1}\) (D) \(4 \mathrm{~ms}^{-1}\)
A particle has initial velocity \((2 \hat{1}+3 \hat{j}) \mathrm{ms}^{-1}\) and has acceleration \((\hat{1}+\hat{j}) \mathrm{ms}^{-2}\). Find the velocity of the particle after 2 second. (A) \((3 \hat{1}+5 \hat{j}) \mathrm{ms}^{-1}\) (B) \((4 \hat{i}+5 \hat{\jmath}) \mathrm{ms}^{-1}\) (C) \((3 \hat{1}+2 \hat{j}) \mathrm{ms}^{-1}\) (D) \((5 \hat{1}+4 \hat{j}) \mathrm{ms}^{-1}\)
Which from the following is a scalar? (A) Electric current (B) Velocity (C) acceleration (D) Electric field
Find a unit vector from the followings. (A) \(\hat{\imath}+\hat{j}\) (B) \(\hat{\imath}-\hat{j}\) (C) \((1 / \sqrt{2}) \hat{\imath}+(1 / \sqrt{2}) \hat{\jmath}\) (D) \((1 / \sqrt{2}) \hat{1}-(1 / 2) \hat{\jmath}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.