Chapter 2: Problem 167
Mechanics is a branch of physics. This branch is ... (A) Kinematics without dynamics (B) dynamics without Kinematics (C) Kinematics and dynamics (D) Kinematics or dynamics
Chapter 2: Problem 167
Mechanics is a branch of physics. This branch is ... (A) Kinematics without dynamics (B) dynamics without Kinematics (C) Kinematics and dynamics (D) Kinematics or dynamics
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle moves in \(\mathrm{x}-\mathrm{y}\) plane. The position vector of the particle is given by $\mathrm{r}^{\rightarrow}=\left[3 \mathrm{ti}-2 \mathrm{t}^{2} \hat{\mathrm{j}}\right] \mathrm{m}$ Find the rate of change of \(\theta\) at \(t=1\) second. Where \(\theta\) is the angle between direction of motion and \(x\) (A) \((16 / 25)\) (B) \((12 / 25)\) (C) \(-(12 / 25)\) (D) \((16 / 9)\)
The angle between \(i \wedge+j \wedge\) and \(z\) axis is \(\ldots\) (A) 0 (B) 45 (C) 90 (D) 180
\(\mathrm{A}=+\mathrm{i} \wedge+\mathrm{j} \wedge-2 \mathrm{k} \wedge\) and $\mathrm{B} \overrightarrow{\mathrm{i}} \wedge-\mathrm{j} \wedge+\mathrm{k} \wedge$ Find the unit vector in direction of \(\mathrm{A} \rightarrow \times \mathrm{B}^{\rightarrow}\) (A) $[1 / \sqrt{(23)}](-\mathrm{i} \wedge-5 \mathrm{j} \wedge-2 \mathrm{k} \wedge)$ (B) $[1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 \mathrm{j} \wedge-3 \mathrm{k} \wedge)$ (C) \([1 / \sqrt{(29})](-i \wedge-5 j \wedge-3 k \wedge)\) (D) \([1 / \sqrt{(35)]}(-\mathrm{i} \wedge-5 j \wedge-3 \mathrm{k} \wedge)\)
The distance travelled by a particle is given by $\mathrm{s}=3+2 \mathrm{t}+5 \mathrm{t}^{2}\( The initial velocity of the particle is \)\ldots$ (A) 2 unit (B) 3 unit (C) 10 unit (D) 5 unit
The resultant of two forces of magnitude \(2 \mathrm{~N}\) and \(3 \mathrm{~N}\) can never be. (A) \(4 \mathrm{~N}\) (B) \(1 \mathrm{~N}\) (C) \(2.5 \mathrm{~N}\) (D) \((1 / 2) \mathrm{N}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.