Chapter 18: Problem 2544
Large angle scattering of \(\alpha-\) particle could not be explained by (A) Thomson model (B) Rutherford model (C) Both Thomson and Rutherford model (D) neither Thomson nor Rutherford model
Chapter 18: Problem 2544
Large angle scattering of \(\alpha-\) particle could not be explained by (A) Thomson model (B) Rutherford model (C) Both Thomson and Rutherford model (D) neither Thomson nor Rutherford model
All the tools & learning materials you need for study success - in one app.
Get started for freeThe wave length of the first line of Lyman series for hydrogen atom is equal to that of hydrogen atom is equal to that of second line of Balmar series for a hydrogen like ion. The atomic number \(\mathrm{Z}\) of hydrogen like ion is (A) 1 (B) 2 (C) 3 (D) 4
The size of the nucleus is of the order of (A) \(10^{-10} \mathrm{~m}\) (B) \(10^{-14} \mathrm{~m}\) (C) \(10^{-19} \mathrm{~m}\) (D) \(10^{-3} \mathrm{~m}\)
A radioactive sample has \(\mathrm{n}_{0}\) active atom at \(\mathrm{t}=\mathrm{o}\), at the rate of disintegration at any time is \(\mathrm{R}\) and the number of atom is \(\mathrm{N}\), then ratio. $(\mathrm{R} / \mathrm{N})\( varies with time \)(\mathrm{t})$ as.
(i) statement-I :- Large angle scattering of alpha Particle led to discovery of atomic nucleus. statement-II :- Entire Positive charge of atom is concentrated in the central core. (A) statement -I and II are true. and statement II is correct explanation of statement-I (B) statement -I and II are true, but statement-II is not correct explanation of statement I (C) statement I is true, but statement II is false. (D) statement I is false but statement II is true (ii) statement-I \(1 \mathrm{amu}=931.48 \mathrm{MeV}\) statement-II It follows form \(E=m c^{2}\) (iii) statement -I:- half life time of tritium is \(12.5\) years statement-II:- The fraction of tritium that remains after 50 years is \(6.25 \%\) (iv) statement-I:- Nuclei of different atoms have same size statement-II:- \(\mathrm{R}=\operatorname{Ro}(\mathrm{A})^{1 / 3}\)
In the following nuclear fusion reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0} \mathrm{n}^{1}$ the repulsive potential energy between the two fusing nuclei is $7.7 \times 10^{-14} \mathrm{~J}$. The Temperature to which the gas must be heated is nearly (Boltzman constant \(\mathrm{K}=1.38 \times 10^{-23} \mathrm{JK}^{-1}\) ) (A) \(10^{3} \mathrm{~K}\) (B) \(10^{5} \mathrm{~K}\) (C) \(10^{7} \mathrm{~K}\) (D) \(10^{9} \mathrm{~K}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.