Chapter 18: Problem 2538
In which region of electromagnetic spectrum does the Lyman series of hydrogen atom like (A) \(x\) -ray (B) Infrared (C) visible (D) ultraviolet
Chapter 18: Problem 2538
In which region of electromagnetic spectrum does the Lyman series of hydrogen atom like (A) \(x\) -ray (B) Infrared (C) visible (D) ultraviolet
All the tools & learning materials you need for study success - in one app.
Get started for freeIt the radius of a nucleus of mass number 3 is \(\mathrm{R}\). then the radius of a nucleus of mass number 81 is (A) \(27 \mathrm{R}\) (B) \(9 \mathrm{R}\) (C) \(3 \mathrm{R}\) \((\mathrm{D})(27)^{(1 / 2)} \mathrm{R}\)
\(\mathrm{A}\) and \(\mathrm{B}\) are two radioactive substance whose half lives are 1 and 2 years respectively. Initially \(10 \mathrm{~g}\) of \(\mathrm{A}\) and \(1 \mathrm{~g}\) of \(\mathrm{B}\) is taken. The time after which they will have same quantity remaining is (A) \(3.6\) years (B) 7 years (C) \(6.6\) years (D) 5 years
(i) statement-I :- Large angle scattering of alpha Particle led to discovery of atomic nucleus. statement-II :- Entire Positive charge of atom is concentrated in the central core. (A) statement -I and II are true. and statement II is correct explanation of statement-I (B) statement -I and II are true, but statement-II is not correct explanation of statement I (C) statement I is true, but statement II is false. (D) statement I is false but statement II is true (ii) statement-I \(1 \mathrm{amu}=931.48 \mathrm{MeV}\) statement-II It follows form \(E=m c^{2}\) (iii) statement -I:- half life time of tritium is \(12.5\) years statement-II:- The fraction of tritium that remains after 50 years is \(6.25 \%\) (iv) statement-I:- Nuclei of different atoms have same size statement-II:- \(\mathrm{R}=\operatorname{Ro}(\mathrm{A})^{1 / 3}\)
If \(\mathrm{M}_{0}\) is the mass of an isotope, ${ }^{17}{ }_{8} \mathrm{O}, \mathrm{M}_{\mathrm{p}}\( and \)\mathrm{M}_{\mathrm{n}}$ are the masses of a Proton and neutron respectively, the binding energy of the isotope is (A) \(\left(\mathrm{M}_{0}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{C}^{2}\) (B) $\left(\mathrm{M}_{0}-8 \mathrm{M}_{p}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}$ (C) \(\left(\mathrm{M}_{0}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}\) (D) \(\mathrm{M}_{\mathrm{O}} \mathrm{C}^{2}\)
Complete the reaction ${ }_{0} \mathrm{n}^{1}+{ }_{92} \mathrm{U}^{235} \rightarrow{ }_{56} \mathrm{Ba}^{144}+{ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}+3\left({ }_{0} \mathrm{n}^{1}\right)$ (A) \(_{36} \mathrm{Kr}^{90}\) (B) \(_{36} \mathrm{Kr}^{89}\) (C) \(_{36} \mathrm{Kr}^{91}\) (D) \(_{36} \mathrm{Kr}^{92}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.