Chapter 18: Problem 2537
what Percent of original radioactive substance is left after 5 half life time (A) \(3 \%\) (B) \(5 \%\) (C) \(6 \%\) (D) \(12 \%\)
Chapter 18: Problem 2537
what Percent of original radioactive substance is left after 5 half life time (A) \(3 \%\) (B) \(5 \%\) (C) \(6 \%\) (D) \(12 \%\)
All the tools & learning materials you need for study success - in one app.
Get started for freeexcited hydrogen atom emits a Photon of wave length \(\lambda\) in returning to the ground state The quantum number \(\mathrm{n}\) of excited state is given by (A) \(\sqrt{[}(\lambda . \mathrm{R}-1) /(\lambda \mathrm{R})]\) (B) \(\sqrt{[}(\lambda \mathrm{R}) /(\lambda \mathrm{R}-1)]\) (C) \(\sqrt{[\lambda R}(\lambda \mathrm{R}-1)]\) (D) \(\lambda \mathrm{R}(\mathrm{R}-1)\)
A freshly Prepared radioactive source of half life \(2 \mathrm{~h}\) emits radiation of intensity which is 64 times the Permissible safe level. The minimum time after which is would be possible to work safely with this source is. (A) \(6 \mathrm{~h}\) (B) \(24 \mathrm{~h}\) (C) \(12 \mathrm{~h}\) (D) \(36 \mathrm{~h}\)
\(\mathrm{A}\) and \(\mathrm{B}\) are two radioactive substance whose half lives are 1 and 2 years respectively. Initially \(10 \mathrm{~g}\) of \(\mathrm{A}\) and \(1 \mathrm{~g}\) of \(\mathrm{B}\) is taken. The time after which they will have same quantity remaining is (A) \(3.6\) years (B) 7 years (C) \(6.6\) years (D) 5 years
The energy of electron in the \(\mathrm{n}^{\text {th }}\) orbit of hydrogen atom is expressed as \(E_{n}=-\left[(13.6) / \mathrm{n}^{2}\right] e v .\) The shortest and longest wave length of lyman series will be. (A) \(912 \bar{\AA}, 1216 \AA\) (B) \(1315 \AA, 1530 \AA\) (C) \(5463 \AA, 7858 \AA\) (D) None of these
The total energy of the electron in the first excited state of hydrogen is \(-3.4 \mathrm{eV}\). what is the kinetic energy of the electron in this state? (A) \(6.8 \mathrm{eV}\) (B) \(3.4 \mathrm{eV}\) (C) \(-3.4 \mathrm{eV}\) \((\mathrm{D})-6.8 \mathrm{eV}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.