Chapter 18: Problem 2531
The radio of minimum to maximum wave length in Balmer series is (A) \((1 / 4)\) (B) \((5 / 36)\) (C) \((3 / 4)\) (D) \((5 / 9)\)
Chapter 18: Problem 2531
The radio of minimum to maximum wave length in Balmer series is (A) \((1 / 4)\) (B) \((5 / 36)\) (C) \((3 / 4)\) (D) \((5 / 9)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeComplete the reaction ${ }_{0} \mathrm{n}^{1}+{ }_{92} \mathrm{U}^{235} \rightarrow{ }_{56} \mathrm{Ba}^{144}+{ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}}+3\left({ }_{0} \mathrm{n}^{1}\right)$ (A) \(_{36} \mathrm{Kr}^{90}\) (B) \(_{36} \mathrm{Kr}^{89}\) (C) \(_{36} \mathrm{Kr}^{91}\) (D) \(_{36} \mathrm{Kr}^{92}\)
which of the following cannot be emitted in radioactive decay of the substance? (A) Helium-nucleus (B) Electrons (C) Neutrinos (D) Proton.
excited hydrogen atom emits a Photon of wave length \(\lambda\) in returning to the ground state The quantum number \(\mathrm{n}\) of excited state is given by (A) \(\sqrt{[}(\lambda . \mathrm{R}-1) /(\lambda \mathrm{R})]\) (B) \(\sqrt{[}(\lambda \mathrm{R}) /(\lambda \mathrm{R}-1)]\) (C) \(\sqrt{[\lambda R}(\lambda \mathrm{R}-1)]\) (D) \(\lambda \mathrm{R}(\mathrm{R}-1)\)
Large angle scattering of \(\alpha-\) particle could not be explained by (A) Thomson model (B) Rutherford model (C) Both Thomson and Rutherford model (D) neither Thomson nor Rutherford model
A radioactive sample has \(\mathrm{n}_{0}\) active atom at \(\mathrm{t}=\mathrm{o}\), at the rate of disintegration at any time is \(\mathrm{R}\) and the number of atom is \(\mathrm{N}\), then ratio. $(\mathrm{R} / \mathrm{N})\( varies with time \)(\mathrm{t})$ as.
What do you think about this solution?
We value your feedback to improve our textbook solutions.