Chapter 18: Problem 2523
The Rutherford revolution Per second made by an electron in the first Bohr orbit of hydrogen atom is of the order of (A) \(10^{15}\) (B) \(10^{20}\) (C) \(10^{10}\) (D) \(10^{19}\)
Chapter 18: Problem 2523
The Rutherford revolution Per second made by an electron in the first Bohr orbit of hydrogen atom is of the order of (A) \(10^{15}\) (B) \(10^{20}\) (C) \(10^{10}\) (D) \(10^{19}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn each of the following question match column -I and column -II. Select correct Answer. (a) Bohr atom model (p) fixed for the atom (b) Ionization potential (q) Nucleus (c) Rutherford atom model (r) stationary orbits (d) Thomson atom model (s) In atom positive and Negative charge are distributed uniformly (A) $\mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{p}$ (B) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{s}$ (C) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{q}$ (D) $\mathrm{b} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{d} \rightarrow \mathrm{s}$
The energy difference between the first two levels of hydrogen atom is $10.2 \mathrm{eV}$. what is the corresponding energy difference for a singly ionized helium atom? (A) \(10.2 \mathrm{eV}\) (B) \(81.6 \mathrm{eV}\) (C) \(20.4 \mathrm{eV}\) (D) \(40.8 \mathrm{eV}\)
The activity of a radioactive sample is measured as \(\mathrm{N}_{0}\) counts per minute at \(\mathrm{t}=0\) and \(\left(\mathrm{N}_{0} / \mathrm{e}\right)\) counts Per minute at \(\mathrm{t}=5 \mathrm{~min} .\) The time (in min) at which activity reduces to half its value is (A) log e \((2 / 5)\) (B) \(5 \log _{10} 2\) (C) \(5 \log _{\mathrm{e}} 2\) (D) \(\log _{10}^{(2 / 5)}\)
The binding energy Per nucleon of \({ }_{8} \mathrm{O}^{16}\) is $7.97 \mathrm{MeV}\( and that of \)_{8} \mathrm{O}^{17}\( is \)7.75 \mathrm{MeV}$ The energy \((\mathrm{in}-\mathrm{MeV})\) required to remove a neutron from $_{8} \mathrm{O}^{17}$ is (A) \(3.65\) (B) \(7.86\) (C) \(3.52\) (D) \(4.23\)
The wave length of the first line of Lyman series for hydrogen atom is equal to that of hydrogen atom is equal to that of second line of Balmar series for a hydrogen like ion. The atomic number \(\mathrm{Z}\) of hydrogen like ion is (A) 1 (B) 2 (C) 3 (D) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.