Chapter 18: Problem 2481
If \(13.6 \mathrm{eV}\) energy is required to ionise the hydrogen atom the energy required to remove the electron form \(n=2\) state is (A) Zero (B) \(10.2 \mathrm{eV}\) (C) \(6.8 \mathrm{eV}\) (D) \(3.4 \mathrm{eV}\)
Chapter 18: Problem 2481
If \(13.6 \mathrm{eV}\) energy is required to ionise the hydrogen atom the energy required to remove the electron form \(n=2\) state is (A) Zero (B) \(10.2 \mathrm{eV}\) (C) \(6.8 \mathrm{eV}\) (D) \(3.4 \mathrm{eV}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe radio of minimum to maximum wave length in Balmer series is (A) \((1 / 4)\) (B) \((5 / 36)\) (C) \((3 / 4)\) (D) \((5 / 9)\)
The Rutherford revolution Per second made by an electron in the first Bohr orbit of hydrogen atom is of the order of (A) \(10^{15}\) (B) \(10^{20}\) (C) \(10^{10}\) (D) \(10^{19}\)
The radius of Ge nucleus is measured to be twice the radius of ${ }^{9}{ }_{4}$ Be. The number of nucleons in Ge are (A) 72 (B) 78 (C) 65 (D) 80
In Bohr model the hydrogen atom, the lowest orbit corresponds to (A) Infinite energy (B) zero energy (C) The minimum energy (D) The maximum energy
Match column I and II and chose correct Answer form the given below. (a) Nuclear fusion (p) converts some matter into energy (b) Nuclear fission (q) generally Possible for nuclei with low atomic number (c) \(\beta\) decay (r) generally Possible for nuclei with high atomic number (d) Exothermic nuclear (s) Essentially Proceeds by weak reaction nuclear force(c) (A) $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{q}$ (B) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$ (C) $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{s}, \mathrm{d} \rightarrow \mathrm{p}$ (D) $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{q}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{d} \rightarrow \mathrm{s}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.