Problem 2491
A radio-active nucleus \({ }^{\mathrm{A}} \mathrm{Z} \mathrm{X}\) emits $3 \alpha$ -particles and 2 Positrons. the ratio of number of neutron to that of Protons in the final nucleus will be (A) \([(\mathrm{A}-\mathrm{Z}-8) /(\mathrm{Z}-8)]\) (B) \([(\mathrm{A}-\mathrm{Z}-12) /(\mathrm{Z}-4)]\) (C) \([(\mathrm{A}-\mathrm{Z}-4) /(\mathrm{Z}-8)]\) (D) \([(A-Z-4) /(Z-2)]\)
Problem 2493
when \({ }_{3}^{7}\) Li nuclear are bombarded by Proton and the resultant nuclei are \({ }^{8}{ }_{4}\) Be, the emitted particle will be (A) neutron (B) gamma (C) alpha (D) Beta
Problem 2494
starting with a sample of Pure \({ }^{66} \mathrm{cu},(7 / 8)\) of it decays into \(\mathrm{Zn}\), 15 minutes. The half life the sample is (A) \(5 \mathrm{~min}\) (B) \(7.5 \mathrm{~min}\) (C) \(10 \mathrm{~min}\) (D) \(15 \mathrm{~min}\)
Problem 2495
An \(\alpha\) -particle of energy \(5 \mathrm{MeV}\) is scattered though \(180^{\circ}\) by a fixed uranium nucleus. The distance of the closet approach is of the order of (A) \(10^{-8} \mathrm{~cm}\) (B) \(10^{-12} \mathrm{~cm}\) (C) \(10^{-10} \mathrm{~cm}\) (D) \(10^{-15} \mathrm{~cm}\)
Problem 2496
The binding energy Per nucleon of deuteron $\left({ }^{2}{ }_{1} \mathrm{H}\right)\( and Lielium nucleus \){ }_{2}{ }^{4}{ }_{2} \mathrm{He}$ ) is \(1.1 \mathrm{MeV}\) and \(7.0 \mathrm{MeV}\). respectively. If two deuteron react to form a single helium nucleus, the energy released is (A) \(23.6 \mathrm{MeV}\) (B) \(26.9 \mathrm{MeV}\) (C) \(13.9 \mathrm{MeV}\) (D) \(19.2 \mathrm{MeV}\)
Problem 2497
The nucleus at rest disintegrate into two nuclear parts which have their velocities in the ratio \(2: 1\) The ratio of their nuclear sizes will be (A) \(2^{(1 / 3)}: 1\) (B) \(1: 2^{(1 / 3)}\) (C) \(3^{(1 / 2)}: 1\) (D) \(1: 3^{(1 / 2)}\)
Problem 2498
A radiation of energy \(\mathrm{E}\) falls normally on a Perfect reflecting surface. The momentum transferred to the surface is. (A) \((\mathrm{E} / \mathrm{c})\) (B) \((2 \mathrm{E} / \mathrm{c})\) (C) \(\left(\mathrm{E} / \mathrm{c}^{2}\right)\) (D) Ec
Problem 2499
In the following nuclear fusion reaction ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0} \mathrm{n}^{1}$ the repulsive potential energy between the two fusing nuclei is $7.7 \times 10^{-14} \mathrm{~J}$. The Temperature to which the gas must be heated is nearly (Boltzman constant \(\mathrm{K}=1.38 \times 10^{-23} \mathrm{JK}^{-1}\) ) (A) \(10^{3} \mathrm{~K}\) (B) \(10^{5} \mathrm{~K}\) (C) \(10^{7} \mathrm{~K}\) (D) \(10^{9} \mathrm{~K}\)
Problem 2500
If the binding energy Per nucleon in \({ }_{3}^{7} \mathrm{Li}\) and ${ }^{4}{ }_{2}\( He nuclear is \)5.6 \mathrm{MeV}\( and \)7.06 \mathrm{MeV}$ respectively, then in the reaction $\mathrm{P}+{ }_{3} \mathrm{Li} \rightarrow 2\left({ }_{2}^{4} \mathrm{He}\right)$ (P here retrent Proton) energy of Proton must be (A) \(1.46 \mathrm{MeV}\) (B) \(39.2 \mathrm{MeV}\) (C) \(17.28 \mathrm{MeV}\) (D) \(28.24 \mathrm{MeV}\)
Problem 2501
If \(\mathrm{M}_{0}\) is the mass of an isotope, ${ }^{17}{ }_{8} \mathrm{O}, \mathrm{M}_{\mathrm{p}}\( and \)\mathrm{M}_{\mathrm{n}}$ are the masses of a Proton and neutron respectively, the binding energy of the isotope is (A) \(\left(\mathrm{M}_{0}-8 \mathrm{M}_{\mathrm{p}}\right) \mathrm{C}^{2}\) (B) $\left(\mathrm{M}_{0}-8 \mathrm{M}_{p}-9 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}$ (C) \(\left(\mathrm{M}_{0}-17 \mathrm{M}_{\mathrm{n}}\right) \mathrm{C}^{2}\) (D) \(\mathrm{M}_{\mathrm{O}} \mathrm{C}^{2}\)