Chapter 17: Problem 2439
If \(\propto\) -particle and proton have same velocities, the ratio of de Broglie wavelength of \(\propto\) -particle and proton is \(\ldots \ldots\) (A) \((1 / 4)\) (B) \((1 / 2)\) (C) 1 (D) 2
Chapter 17: Problem 2439
If \(\propto\) -particle and proton have same velocities, the ratio of de Broglie wavelength of \(\propto\) -particle and proton is \(\ldots \ldots\) (A) \((1 / 4)\) (B) \((1 / 2)\) (C) 1 (D) 2
All the tools & learning materials you need for study success - in one app.
Get started for freeThe work function of a metal is \(1 \mathrm{eV}\). Light of wavelength $3000 \AA$ is incident on this metal surface. The maximum velocity of emitted photoelectron will be \(\ldots \ldots .\) (A) \(10 \mathrm{~ms}^{-1}\) (B) \(10^{3} \mathrm{~ms}^{-1}\) (C) \(10^{4} \mathrm{~ms}^{-1}\) (D) \(10^{6} \mathrm{~ms}^{-1}\)
If ratio of threshold frequencies of two metals is \(1: 3\), ratio of their work functions is \(\ldots \ldots\) (A) \(1: 3\) (B) \(3: 1\) (C) \(4: 16\) (D) \(16: 4\)
Radius of a beam of radiation of wavelength \(5000 \AA\) is $10^{-3} \mathrm{~m}\(. Power of the beam is \)10^{-3} \mathrm{~W}$. This beam is normally incident on a metal of work function \(1.9 \mathrm{eV}\). The charge emitted by the metal per unit area in unit time is \(\ldots \ldots \ldots\) Assume that each incident photon emits one electron. $\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$ (A) \(1.282 \mathrm{C}\) (B) \(12.82 \mathrm{C}\) (C) \(128.2 \mathrm{C}\) (D) \(1282 \mathrm{C}\)
The uncertainty in position of a particle is same as its de-Broglie wavelength, uncertainty in its momentum is \(\ldots \ldots\) (A) \((\overline{\mathrm{h}} / \lambda)\) (B) \((2 \overline{\mathrm{h}} / 3 \lambda)\) (C) \((\lambda \lambda) \overline{\mathrm{h}}\) (D) \((3 N 2 \lambda) \overline{\mathrm{h}}\)
An electron is accelerated between two points having potential $20 \mathrm{~V}\( and \)40 \mathrm{~V}$, de-Broglic wavelength of electron is \(\ldots \ldots\) (A) \(0.75 \AA\) (B) \(7.5 \AA\) (C) \(2.75 \AA\) (D) \(0.75 \mathrm{~nm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.