Chapter 17: Problem 2421
Through what potential difference should an electron be accelerated so it's de-Broglie wavelength is \(0.3 \AA\). (A) \(1812 \mathrm{~V}\) (B) \(167.2 \mathrm{~V}\) (C) \(1516 \mathrm{~V}\) (D) \(1672.8 \mathrm{~V}\)
Chapter 17: Problem 2421
Through what potential difference should an electron be accelerated so it's de-Broglie wavelength is \(0.3 \AA\). (A) \(1812 \mathrm{~V}\) (B) \(167.2 \mathrm{~V}\) (C) \(1516 \mathrm{~V}\) (D) \(1672.8 \mathrm{~V}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAn electric bulb of \(100 \mathrm{w}\) converts \(3 \%\) of electrical energy into light energy. If the wavelength of light emitted is \(6625 \AA\), the number of photons emitted is \(1 \mathrm{~s}\) is \(\ldots \ldots\) $\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$ (A) \(10^{17}\) (B) \(10^{19}\) (C) \(10^{21}\) (D) \(10^{15}\)
Wavelength \(\lambda_{\mathrm{A}}\) and \(\lambda_{\mathrm{B}}\) are incident on two identical metal plates and photo electrons are emitted. If \(\lambda_{\mathrm{A}}=2 \lambda_{\mathrm{B}}\), the maximum kinetic energy of photo electrons is \(\ldots \ldots \ldots\) (A) \(2 \mathrm{~K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\) (B) \(\mathrm{K}_{\mathrm{A}}<\left(\mathrm{K}_{\mathrm{B}} / 2\right)\) (C) \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\) (D) \(\mathrm{K}_{\mathrm{A}}>\left(\mathrm{K}_{\mathrm{B}} / 2\right)\)
Compare energy of a photon of X-rays having \(1 \AA\) wavelength with the energy of an electron having same de Broglie wavelength. $\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, 1 \mathrm{ev}=1.6 \times 10^{-19} \mathrm{~J}\right)$ (A) \(8.24\) (B) \(2.48\) (C) \(82.4\) (D) \(24.8\)
de-Broglie wavelength of proton accelerated under \(100 \mathrm{~V}\) electric potential difference is \(\lambda_{0} .\) If de-wave length \(\alpha\) -particle accelerated by the same electric potential difference what will its bouglie wavelength...... (A) \(2 \sqrt{2 \lambda_{0}}\) (B) \(\left\\{\lambda_{0} /(2 \sqrt{2})\right\\}\) (C) \(\left(\lambda_{0} / \sqrt{2}\right)\) (D) \(\left(\lambda_{0} / 2\right)\)
Work function of metal is \(4.2 \mathrm{eV}\) If ultraviolet radiation (photon) having energy \(6.2 \mathrm{eV}\), stopping potential will be........ (A) \(2 \mathrm{eV}\) (B) \(2 \mathrm{~V}\) (C) 0 (d) \(10.4 \mathrm{~V}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.