Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An electron moving with velocity \(0.6 \mathrm{c}\), then de-brogly wavelength associated with is \(\ldots \ldots \ldots\) (rest mars of electron, \(\mathrm{m}_{0}=9.1 \times 10^{-31}(\mathrm{k} / \mathrm{s})\) \(\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}\) (A) \(3.24 \times 10^{-12} \mathrm{~m}\) (B) \(32.4 \times 10^{-12} \mathrm{~m}\) (C) \(320 \times 10^{-12} \mathrm{~m}\) (D) \(3.29 \times 10^{-14} \mathrm{~m}\)

Short Answer

Expert verified
The de Broglie wavelength associated with the electron moving with velocity \(0.6c\) is approximately \(3.24 \times 10^{-12} \, m\).

Step by step solution

01

Identify the de Broglie wavelength formula

The de Broglie wavelength formula is given by: \[ \lambda = \frac{h}{p} \] where \(\lambda\) is the de Broglie wavelength, \(h\) is the Planck's constant, and \(p\) is the momentum of the particle.
02

Calculate the electron's momentum

The momentum formula for a relativistic particle is given by: \[ p = \frac{m_0 v}{\sqrt{1 - \frac{v^2}{c^2}}} \] Let's plug the values of mass of electron (\(m_0 = 9.1 \times 10^{-31} \, kg\)), velocity (\(v = 0.6c\)), and the speed of light (\(c = 3 \times 10^8 \, m/s\)) into the formula. \[ p = \frac{9.1 \times 10^{-31} \times 0.6 \times (3 \times 10^8)}{\sqrt{1 - 0.6^2}} \]
03

Solve for the momentum

After simplifying and calculating the denominator, we find: \[ p = \frac{9.1 \times 10^{-31} \times 0.6 \times (3 \times 10^8)}{\sqrt{1 - 0.36}} = \frac{9.1 \times 10^{-31} \times 0.6 \times (3 \times 10^8)}{\sqrt{0.64}} = \frac{9.1 \times 10^{-31} \times 0.6 \times (3 \times 10^8)}{0.8} \] Further calculation gives: \[ p \approx 2.051 \times 10^{-22} \, kg \cdot m/s \]
04

Calculate de Broglie wavelength

Now, we'll substitute the values of Planck's constant (\(h = 6.63 \times 10^{-34} \, Js\)) and the calculated momentum into the de Broglie wavelength formula: \[ \lambda = \frac{6.63 \times 10^{-34}}{2.051 \times 10^{-22}} \approx 3.23 \times 10^{-12} \, m \]
05

Match the calculated wavelength with the given options

Comparing our calculated wavelength with the given options, it's closest to option (A): \[ \lambda = 3.24 \times 10^{-12} \, m \]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the velocity at which mass of a proton becomes \(1.1\) times its rest mass, \(\mathrm{m}_{\mathrm{g}}=1.6 \times 10^{-27} \mathrm{~kg}\) Also, calculate corresponding temperature. For simplicity, consider a proton as non- interacting ideal-gas particle at \(1 \mathrm{~atm}\) pressure. $\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \cdot \mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right)$ (A) $\mathrm{V}=1.28 \times 10^{8}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.65 \times 10^{12} \mathrm{~K}$ (B) $\mathrm{V}=12.6 \times 10^{8}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.65 \times 10^{11} \mathrm{~K}$ (C) $\mathrm{V}=1.26 \times 10^{7}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=5.76 \times 10^{11} \mathrm{~K}$ (D) $\mathrm{V}=12.6 \times 10^{7}(\mathrm{~m} / \mathrm{s}), \mathrm{T}=7.56 \times 10^{11} \mathrm{~K}$

For wave concerned with proton, de-Broglie wavelength change by \(0.25 \%\). If its momentum changes by \(\mathrm{P}_{\mathrm{O}}\) initial momentum $=\ldots \ldots \ldots$ (A) \(100 \mathrm{P}_{\mathrm{O}}\) (B) \(\left\\{\mathrm{P}_{\mathrm{O}} / 400\right\\}\) (C) \(401 \mathrm{P}_{\mathrm{O}}\) (D) \(\left\\{\mathrm{P}_{\mathrm{O}} / 100\right\\}\)

Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (A) Particle nature of light (p) Davisson and Germes (B) Wave nature of light (q) G. P. Thomson (C) Wave nature of slow moving electrons (r) Max. Planck (D) Wave nature of fast moving electrons (s) Huygens (A) \((\mathrm{A}-\mathrm{p}),(\mathrm{B}-\mathrm{q}),(\mathrm{C}-\mathrm{r}),(\mathrm{D}-\mathrm{s})\) (B) \((\mathrm{A}-\mathrm{q}),(\mathrm{B}-\mathrm{r}),(\mathrm{C}-\mathrm{s}),(\mathrm{D}-\mathrm{p})\) (C) \((\mathrm{A}-\mathrm{r}),(\mathrm{B}-\mathrm{s}),(\mathrm{C}-\mathrm{p}),(\mathrm{D}-\mathrm{q})\) (D) \((\mathrm{A}-\mathrm{s}),(\mathrm{B}-\mathrm{r}),(\mathrm{C}-\mathrm{q}),(\mathrm{D}-\mathrm{p})\)

What should be the ratio of de-Broglie wavelength of an atom of nitrogen gas at \(300 \mathrm{~K}\) and \(1000 \mathrm{~K}\). Mass of nitrogen atom is $4.7 \times 10^{-26} \mathrm{~kg}$ and it is at 1 atm pressure Consider it as an idecal gas. (A) \(2.861\) (B) \(8.216\) (C) \(6.281\) (D) \(1.826\)

Photocell cell is enlightended by small bright source \(1 \mathrm{~m}\) away. If the same light source is placed \((1 / 2) \mathrm{m}\) away, number of electrons emitted by cathode will be........ (A) increases twice (B) decreases twice (C) increases 4 times (D) decreases 4 times

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free