Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The work function of metal is \(5.3 \mathrm{eV}\). What is threshold frequency? (A) \(3.1 \times 10^{15} \mathrm{~Hz}\) (B) \(3.1 \times 10^{45} \mathrm{~Hz}\) (C) \(1.3 \times 10^{15} \mathrm{~Hz}\) (D) \(1.3 \times 10^{45} \mathrm{~Hz}\)

Short Answer

Expert verified
The threshold frequency can be calculated using the photoelectric effect equation \(ϕ = h \times f\), where \(ϕ\) is the work function and \(h\) is Planck's constant. Converting the given work function \(5.3 \mathrm{eV}\) to Joules, we get \(8.48 \times 10^{-19} \mathrm{J}\). Using Planck's constant \(h = 6.63 \times 10^{-34} \mathrm{Js}\), we can find the threshold frequency \(f = \frac{ϕ}{h} = 1.28 \times 10^{15} \mathrm{Hz}\). Comparing with the options, the closest option is (C) \(1.3 \times 10^{15} \mathrm{Hz}\).

Step by step solution

01

Write down the photoelectric effect equation

The photoelectric effect equation relating the work function (ϕ), Planck's constant (h), and the threshold frequency (f) is: \(ϕ = h \times f\)
02

Identify the given work function and write it in Joules

The given work function is 5.3 eV. We need to convert it to Joules using the following relationship: 1 eV = \(1.6 \times 10^{-19} J\) So, the work function in Joules is: \(ϕ = 5.3 \mathrm{eV} \times 1.6 \times 10^{-19} \frac{\mathrm{J}}{\mathrm{eV}} = 8.48 \times 10^{-19} \mathrm{J}\)
03

Find Planck's constant

Planck's constant (h) has a fixed value, which is: \(h = 6.63 \times 10^{-34} \mathrm{Js}\)
04

Calculate the threshold frequency

Now we can use the photoelectric effect equation to find the threshold frequency: \(f = \frac{ϕ}{h}\) \(f = \frac{8.48 \times 10^{-19} \mathrm{J}}{6.63 \times 10^{-34} \mathrm{Js}}\) \(f = 1.28 \times 10^{15} \mathrm{Hz}\)
05

Match the calculated threshold frequency with the given options

Now that we have calculated the threshold frequency, we can compare it to the given options: (A) \(3.1 \times 10^{15} \mathrm{~Hz}\) (B) \(3.1 \times 10^{45} \mathrm{~Hz}\) (C) \(1.3 \times 10^{15} \mathrm{~Hz}\) (D) \(1.3 \times 10^{45} \mathrm{~Hz}\) The calculated threshold frequency \(1.28 \times 10^{15} \mathrm{Hz}\) is approximately equal to (C) \(1.3 \times 10^{15} \mathrm{Hz}\). Therefore, the correct answer is (C).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Wavelength \(\lambda_{\mathrm{A}}\) and \(\lambda_{\mathrm{B}}\) are incident on two identical metal plates and photo electrons are emitted. If \(\lambda_{\mathrm{A}}=2 \lambda_{\mathrm{B}}\), the maximum kinetic energy of photo electrons is \(\ldots \ldots \ldots\) (A) \(2 \mathrm{~K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\) (B) \(\mathrm{K}_{\mathrm{A}}<\left(\mathrm{K}_{\mathrm{B}} / 2\right)\) (C) \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\) (D) \(\mathrm{K}_{\mathrm{A}}>\left(\mathrm{K}_{\mathrm{B}} / 2\right)\)

Power produced by a star is \(4 \times 10^{28} \mathrm{~W}\). If the average wavelength of the emitted radiations is considered to be \(4500 \AA\) the number of photons emitted in \(1 \mathrm{~s}\) is \(\ldots \ldots\) (A) \(1 \times 10^{45}\) (B) \(9 \times 10^{46}\) (C) \(8 \times 10^{45}\) (D) \(12 \times 10^{46}\)

Photons of energy \(1 \mathrm{eV}\) and \(2.5 \mathrm{ev}\) successively illuminate a metal, whose work function is \(0.5 \mathrm{eV}\), the ratio of maximum speed of emitted election is \(\ldots \ldots \ldots .\) (A) \(1: 2\) (B) \(2: 1\) (C) \(3: 1\) (D) \(1: 3\)

Calculate the energy of a photon of radian wavelength \(6000 \AA\) in \(\mathrm{eV}\) (A) \(20.6 \mathrm{eV}\) (B) \(2.06 \mathrm{eV}\) (C) \(1.03 \mathrm{eV}\) (D) \(4.12 \mathrm{eV}\)

U. V. light of wavelength \(200 \mathrm{~nm}\) is incident on polished surface of Fe. work function of the surface is \(4.5 \mathrm{eV}\). Find maximum speed of phote electrons. $\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$ (A) \(7.75 \times 10^{4}(\mathrm{~m} / \mathrm{s})\) (B) \(875 \times 10^{5}(\mathrm{~m} / \mathrm{s})\) (C) \(8.75 \times 10^{4}(\mathrm{~m} / \mathrm{s})\) (D) \(7.75 \times 10^{5}(\mathrm{~m} / \mathrm{s})\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free