Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The work function of a metal is \(1 \mathrm{eV}\). Light of wavelength $3000 \AA$ is incident on this metal surface. The maximum velocity of emitted photoelectron will be \(\ldots \ldots .\) (A) \(10 \mathrm{~ms}^{-1}\) (B) \(10^{3} \mathrm{~ms}^{-1}\) (C) \(10^{4} \mathrm{~ms}^{-1}\) (D) \(10^{6} \mathrm{~ms}^{-1}\)

Short Answer

Expert verified
The maximum velocity of the emitted photoelectrons is approximately \(10^6 \text{~ms}^{-1}\) (option D) when light of wavelength \(3000 \mathring{A}\) is incident on a metal surface with a work function of \(1 \mathrm{eV}.\)

Step by step solution

01

Identify the given data

The work function of the metal (Φ) is given as 1 eV and the wavelength of the incident light (λ) as 3000 Å.
02

Convert given data into SI units and needed units

First, we need to convert the work function of the metal from electronvolt (eV) to Joules (J) and wavelength from Angstrom (Å) to meter (m). Φ = 1 eV × (1.6 × 10^{-19} J/eV) = 1.6 × 10^{-19} J λ = 3000 Å × (1 × 10^{-10} m/Å) = 3 × 10^{-7} m
03

Calculate the energy of the incident photons using Planck's equation

Planck's equation relates energy (E) with the wavelength (λ) of a photon using the formula: E = \(\frac{hc}{\lambda}\) where h is the Planck constant (6.63 × 10^{-34} J s) and c is the speed of light (3 × 10^8 m/s). E = \(\frac{(6.63 \times 10^{-34} \text{J s}) \times (3 \times 10^{8} \text{m/s})}{3 \times 10^{-7} \text{m}}\) E = 6.63 × 10^{-19} J
04

Calculate the maximum kinetic energy of the emitted photoelectrons

Using the photoelectric effect equation, we can find the maximum kinetic energy (K.E.) of the emitted photoelectrons: K.E. = E - Φ K.E. = 6.63 × 10^{-19} J - 1.6 × 10^{-19} J K.E. = 5.03 × 10^{-19} J
05

Calculate the maximum velocity of the photoelectrons

Using the kinetic energy equation, we can find the maximum velocity (v) of the emitted photoelectrons: K.E. = \(\frac{1}{2}mv^{2}\) where m is the mass of an electron (9.11 × 10^{-31} kg). Rearranging the equation to solve for v, we get: v = \( \sqrt{\frac{2 \times \text{K.E.}}{m}} \) v = \( \sqrt{\frac{2 \times 5.03 \times 10^{-19} \text{J}}{9.11 \times 10^{-31} \text{kg}}} \) v ≈ 10^6 m/s
06

Choose the correct answer from the given options

The maximum velocity of the emitted photoelectrons is approximately 10^6 m/s, which corresponds to option (D). Therefore, the correct answer is: (D) \(10^{6} \text{~ms}^{-1}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Radius of a nucleus \(2 \times 10^{-15} \mathrm{~m} .\) If we imagine an electron inside the nucleus then energy of electron will be $=\ldots \ldots . \mathrm{MeV}$ $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ (A) \(6.98 \times 10^{3}\) (B) \(8.94 \times 10^{3}\) (C) \(4.98 \times 10^{3}\) (D) \(9.48 \times 10^{3}\)

With how much p.d. should an electron be accelerated, so that its de-Broglie wavelength is \(0.4 \AA\) (A) \(9410 \mathrm{~V}\) (B) \(94.10 \mathrm{~V}\) (C) \(9.140 \mathrm{~V}\) (D) \(941.0 \mathrm{~V}\)

Particle \(\mathrm{A}\) and \(\mathrm{B}\) have electric charge \(+\mathrm{q}\) and \(+4 \mathrm{q} .\) Both have mass \(\mathrm{m}\). If both are allowed to fall under the same p.d., ratio of velocities $\left(\mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}\right)=\ldots \ldots \ldots \ldots \ldots$ (A) \(2: 1\) (B) \(1: 2\) (C) \(1: 4\) (D) \(4: 1\)

A photon having energy \(5.5 \mathrm{eV}\) is incident on metal suface and emits photo electrons having maximum kinetic energy \(0.4 \mathrm{eV}\). Then stopping potential of this electron is..... (A) \(5.5 \mathrm{eV}\) (B) \(5.1 \mathrm{eV}\) (C) \(5.9 \mathrm{eV}\) (D) \(0.4 \mathrm{eV}\)

Work function of tungsten and sodium are \(4.5 \mathrm{eV}\) and $2.3 \mathrm{eV}\( respectively. If threshold wavelength for sodium is \)5460 \mathrm{~A}$, threshold frequency for tungsten will be ............ (A) \(10^{15} \mathrm{~Hz}\) (B) \(1.1 \times 10^{15} \mathrm{~Hz}\) (C) \(1.2 \times 10^{15} \mathrm{~Hz}\) (D) \(1.4 \times 10^{15} \mathrm{~Hz}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free