Chapter 17: Problem 2374
Kinetic energy of proton accelerated under p.d. \(1 \mathrm{~V}\) will be........ (A) \(1840 \mathrm{eV}\) (B) \(13.6 \mathrm{eV}\) (C) \(1 \mathrm{eV}\) (D) \(0.54 \mathrm{eV}\)
Chapter 17: Problem 2374
Kinetic energy of proton accelerated under p.d. \(1 \mathrm{~V}\) will be........ (A) \(1840 \mathrm{eV}\) (B) \(13.6 \mathrm{eV}\) (C) \(1 \mathrm{eV}\) (D) \(0.54 \mathrm{eV}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDirection Read the following question choose if: (a) Both Assertion and Reason are true and Reason is correct explanation of Assertion. (b) Both Assertion and Reason are true, but Reason is not correct explanation of Assertion. (c) Assertion is true but the Reason is false. (d) Both Assertion and Reason is false. Assertion: Metals like Na or \(\mathrm{K}\), emit electrons even when visible lights fall on them. Reason: This is because their work function is low. (A) a (B) \(\mathrm{b}\) (C) \(\mathrm{c}\) (D) d
Work function of metal is \(2.5 \mathrm{eV}\) If wave length of light incident on metal plate is \(3000 \AA\), stopping potential of emitted electron will be....... $\left\\{\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(0.82 \mathrm{~V}\) (B) \(0.41 \mathrm{~V}\) (C) \(1.64 \mathrm{~V}\) (D) \(3.28 \mathrm{~V}\)
Work function of metal is \(2 \mathrm{eV}\). Light of intensity $10^{-5} \mathrm{Wm}^{-2}\( is incident on \)2 \mathrm{~cm}^{2}\( area of it. If \)10^{17}$ electrons of these metals absorb the light, in how much time does the photo electric effectc start? Consider the waveform of incident light. (A) \(1.4 \times 10^{7} \mathrm{sec}\) (B) \(1.5 \times 10^{7} \mathrm{sec}\) (C) \(1.6 \times 10^{7} \mathrm{sec}\) (D) \(1.7 \times 10^{7} \mathrm{sec}\)
According to Rayleigh and Jeans the black body radiation in the cavity is system of (A) progressive electromagnetic waves (B) standing electromagnetic waves (C) electromagnetic waves of discrete (D) standing waves in lattice frequencies
Frequency of photon having energy \(66 \mathrm{eV}\) is ....... \(\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)\) (A) \(8 \times 10^{-15} \mathrm{~Hz}\) (B) \(12 \times 10^{-15} \mathrm{~Hz}\) (C) \(16 \times 10^{-15} \mathrm{~Hz}\) (D) \(24 \times 10^{+15} \mathrm{~Hz}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.