Chapter 17: Problem 2369
Ration of momentum of photons having wavelength \(4000 \AA \& 8000 \AA\) is ........... (A) \(2: 1\) (B) \(1: 2\) (C) \(20: 1\) (D) \(1: 20\)
Chapter 17: Problem 2369
Ration of momentum of photons having wavelength \(4000 \AA \& 8000 \AA\) is ........... (A) \(2: 1\) (B) \(1: 2\) (C) \(20: 1\) (D) \(1: 20\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAccording to Einstein's photoelectric equation, graph of kinetic energy of emitted photo electrons from metal versus frequency of incident radiation is linear. Its slope.......... (A) depends on type of metal used (B) depends on intensity of radiation (C) depends on both metal used and intensity of radiation. (D) is same for all metals and free from intensity of radiation.
Photoelectric effect is obtained on metal surface for a light having frequencies \(\mathrm{f}_{1} \& \mathrm{f}_{2}\) where \(\mathrm{f}_{1}>\mathrm{f}_{2}\). If ratio of maximum kinetic energy of emitted photo electrons is \(1: \mathrm{K}\), so threshold frequency for metal surface is \(\ldots \ldots \ldots \ldots\) (A) $\left\\{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) /(\mathrm{K}-1)\right\\}$ (B) $\left\\{\left(\mathrm{Kf}_{1}-\mathrm{f}_{2}\right) /(\mathrm{K}-1)\right\\}$ (C) $\left\\{\left(\mathrm{K} \mathrm{f}_{2}-\mathrm{f}_{1}\right) /(\mathrm{K}-1)\right\\}$ (D) \(\left\\{\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right) / \mathrm{K}\right\\}\)
Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (I) Energy of photon of wavelength \(\lambda\) is (P) \((\mathrm{E} / \mathrm{p})\) (II) The de Broglie wavelength associated (Q) \(\left(\mathrm{hf} / \mathrm{c}^{2}\right)\) with particle of momentum \(\mathrm{P}\) is (II) Mass of photon in motion is (R) (hc \(/ \lambda\) ) (IV) The velocity of photon of energy (S) \((\mathrm{h} / \mathrm{p})\) \(\mathrm{E}\) and momentum \(\mathrm{P}\) is (A) I - P, II - Q. III - R, IV - S (B) $\mathrm{I}-\mathrm{R}, \mathrm{II}-\mathrm{S}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{P}$ (C) $\mathrm{I}-\mathrm{R}, \mathrm{II}-\mathrm{S}, \mathrm{III}-\mathrm{P}_{3} \mathrm{IV}-\mathrm{Q}$ (D) $\mathrm{I}-\mathrm{S}, \mathrm{II}-\mathrm{R}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{P}$
Wavelength \(\lambda_{\mathrm{A}}\) and \(\lambda_{\mathrm{B}}\) are incident on two identical metal plates and photo electrons are emitted. If \(\lambda_{\mathrm{A}}=2 \lambda_{\mathrm{B}}\), the maximum kinetic energy of photo electrons is \(\ldots \ldots \ldots\) (A) \(2 \mathrm{~K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}\) (B) \(\mathrm{K}_{\mathrm{A}}<\left(\mathrm{K}_{\mathrm{B}} / 2\right)\) (C) \(\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}\) (D) \(\mathrm{K}_{\mathrm{A}}>\left(\mathrm{K}_{\mathrm{B}} / 2\right)\)
If \(\propto\) -particle and proton are accelerated through the same potential difference, then the ratio of de Brogile wavelength of \(\propto\) -particle and proton is \(\ldots \ldots \ldots\) (A) \((1 / \sqrt{2})\) (B) \(\sqrt{2}\) (C) \(\\{1 /(2 \sqrt{2})\\}\) (D) \(2 \sqrt{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.