Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Photoelectric effect is obtained on metal surface for a light having frequencies \(\mathrm{f}_{1} \& \mathrm{f}_{2}\) where \(\mathrm{f}_{1}>\mathrm{f}_{2}\). If ratio of maximum kinetic energy of emitted photo electrons is \(1: \mathrm{K}\), so threshold frequency for metal surface is \(\ldots \ldots \ldots \ldots\) (A) $\left\\{\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) /(\mathrm{K}-1)\right\\}$ (B) $\left\\{\left(\mathrm{Kf}_{1}-\mathrm{f}_{2}\right) /(\mathrm{K}-1)\right\\}$ (C) $\left\\{\left(\mathrm{K} \mathrm{f}_{2}-\mathrm{f}_{1}\right) /(\mathrm{K}-1)\right\\}$ (D) \(\left\\{\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right) / \mathrm{K}\right\\}\)

Short Answer

Expert verified
The threshold frequency for the metal surface is \(f_0 = \left\\{\left(Kf_1 - f_2\right) / (K - 1)\right\\}\).

Step by step solution

01

Write down the given information

We are given the frequencies \(f_1\), \(f_2\) and the ratio of maximum kinetic energies \(1:K\). Let the maximum kinetic energy at frequency \(f_1\) be \(E_1\) and at frequency \(f_2\) be \(E_2\). Based on the given information: \[ \frac{E_1}{E_2} = \frac{1}{K} \]
02

Use the photoelectric effect formula

According to the photoelectric effect formula: For frequency \(f_1\), \[ E_1 = h(f_1 - f_0) \] For frequency \(f_2\), \[ E_2 = h(f_2 - f_0) \]
03

Plug energy ratio into the equations

We can plug the energy ratio into the equations: \[ \frac{E_1}{E_2} = \frac{h(f_1 - f_0)}{h(f_2 - f_0)} = \frac{1}{K} \]
04

Solve for the threshold frequency

Now we will solve the equation for the threshold frequency \(f_0\): \[ \frac{f_1 - f_0}{f_2 - f_0} = \frac{1}{K} \] Multiply both sides by \(K(f_2 - f_0)\): \[ K(f_1 - f_0) = f_2 - f_0 \] Now, solve for \(f_0\): \[ f_0 = \frac{Kf_1 - f_2}{K - 1} \] So the threshold frequency for the metal surface is: \[ f_0 = \left\\{\left(Kf_1 - f_2\right) / (K - 1)\right\\} \] The correct answer is (B).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (A) Planck's theory of quantum (p) Light energy \(=\mathrm{hv}\) (B) Einstein's theory of quanta (q) Angular momentum of electron in an orbit. (C) Bohr's stationary orbit (r) Oscillator energies (D) D-Broglie waves (s) Electron microscope (A) \((\mathrm{A}-\mathrm{p}),(\mathrm{b}-\mathrm{q}),(\mathrm{C}-\mathrm{r}),(\mathrm{D}-\mathrm{s})\) (B) \((\mathrm{A}-\mathrm{q}),(\mathrm{B}-\mathrm{r}),(\mathrm{C}-\mathrm{s}),(\mathrm{D}-\mathrm{p})\) (C) \((\mathrm{A}-\mathrm{r}),(\mathrm{B}-\mathrm{p}),(\mathrm{C}-\mathrm{q}),(\mathrm{D}-\mathrm{s})\) (D) \((\mathrm{A}-\mathrm{r}),(\mathrm{B}-\mathrm{p}),(\mathrm{C}-\mathrm{s}),(\mathrm{D}-\mathrm{q})\)

If de-Broglie wavelength of electron is increased by \(1 \%\) its momentum \(\ldots \ldots\) (A) increases by \(1 \%\) (B) decreases by \(1 \%\) (C) increased by \(2 \%\) (D) decreases by \(2 \%\)

Calculate the energy of a photon of radian wavelength \(6000 \AA\) in \(\mathrm{eV}\) (A) \(20.6 \mathrm{eV}\) (B) \(2.06 \mathrm{eV}\) (C) \(1.03 \mathrm{eV}\) (D) \(4.12 \mathrm{eV}\)

A photon, an electron and a uranium nucleus all have same wavelength. The one with the most energy \(\ldots \ldots \ldots \ldots\) (A) is the photon (B) is the electron (C) is the uranium nucleus (D) depends upon the wavelength and properties of the particle.

The work function of metal is \(5.3 \mathrm{eV}\). What is threshold frequency? (A) \(3.1 \times 10^{15} \mathrm{~Hz}\) (B) \(3.1 \times 10^{45} \mathrm{~Hz}\) (C) \(1.3 \times 10^{15} \mathrm{~Hz}\) (D) \(1.3 \times 10^{45} \mathrm{~Hz}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free