Chapter 17: Problem 2355
\(11 \times 10^{11}\) Photons are incident on a surface in \(10 \mathrm{~s}\). These photons correspond to a wavelength of \(10 \AA\). If the surface area of the given surface is \(0.01 \mathrm{~m}^{2}\), the intensity of given radiations is \(\ldots \ldots\) $\left\\{\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(21.86 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\) (B) \(2.186 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\) (C) \(218.6 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\) (D) \(2186 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\)