Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A star which can be seen with naked eye from Earth has intensity $1.6 \times 10^{-9} \mathrm{Wm}^{-2}\( on Earth. If the corresponding wavelength is \)560 \mathrm{~nm}\(, and the radius of the human eye is \)2.5 \times 10^{-3} \mathrm{~m}\(, the number of photons entering in our in \)1 \mathrm{~s}$ is..... (A) \(7.8 \times 10^{4} \mathrm{~s}^{-1}\) (B) \(8.85 \times 10^{4} \mathrm{~s}^{-1}\) (C) \(7.85 \times 10^{5} \mathrm{~s}^{-1}\) (D) \(8.85 \times 10^{5} \mathrm{~s}^{-1}\)

Short Answer

Expert verified
The number of photons entering the human eye in 1 second is approximately \(7.8 \times 10^{4} \mathrm{~s}^{-1}\) (Option A).

Step by step solution

01

Calculate the energy of a single photon

To calculate the energy of a single photon, we will use the equation: \(E = \dfrac{hc}{\lambda}\) where \(E\) is the energy of the photon, \(h\) is Planck's constant (\(6.626 \times 10^{-34} \mathrm{Js}\)), \(c\) is the speed of light (\(2.998 \times 10^{8} \mathrm{m/s}\)), and \(\lambda\) is the wavelength of the light (\(5.6 \times 10^{-7} \mathrm{m}\)). Using these values, we can find the energy of a single photon: \(E = \dfrac{(6.626 \times 10^{-34} \mathrm{Js})(2.998 \times 10^{8} \mathrm{m/s})}{5.6 \times 10^{-7} \mathrm{m}} \)
02

Calculate the total energy entering the eye

To find the total energy entering the eye, we will multiply the intensity of the light by the area of the aperture of the human eye (which can be approximated as a circle): \(\mathrm{Total~Energy} = \mathrm{Intensity} \times \mathrm{Area} \times \mathrm{Time}\) The area of the aperture can be calculated using the formula \(A = \pi r^2\), where \(A\) is the area and \(r\) is the radius of the eye (given as \(2.5 \times 10^{-3} \mathrm{m}\)). First, calculate the area of the aperture: \(A = \pi (2.5 \times 10^{-3} \mathrm{m})^2\) Now, calculate the total energy entering the eye in 1 second: \(\mathrm{Total~Energy} = (1.6 \times 10^{-9} \mathrm{Wm}^{-2}) (\pi (2.5 \times 10^{-3} \mathrm{m})^2)(1 \mathrm{s})\)
03

Determine the number of photons entering the eye per second

Lastly, we will find the number of photons entering the eye per second by dividing the total energy by the energy of a single photon: \(\mathrm{Number~of~Photons\, =\, \dfrac{Total\,~Energy}{Energy\,~of\,~a\,~Single\,~Photon}}\) \(\mathrm{Number~of ~Photons~ in ~1s} = \dfrac{(1.6 \times 10^{-9} \mathrm{Wm}^{-2}) (\pi (2.5 \times 10^{-3} \mathrm{m})^2)(1 \mathrm{s})}{\dfrac{(6.626 \times 10^{-34} \mathrm{Js})(2.998 \times 10^{8} \mathrm{m/s})}{5.6 \times 10^{-7} \mathrm{m}}}\) After calculating the number of photons, we find the closest answer is: (A) \(7.8 \times 10^{4} \mathrm{~s}^{-1}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (I) Quantization of charge (P) Diffraction of light (II) Wave nature of light (Q) de Broglie hypothesis (III) Dual nature of matter (R) Photo-electric effect (IV) Particle nature of light (S) Millikan's drop experiment (A) $\mathrm{I}-\mathrm{P}, \mathrm{II}-\mathrm{Q}, \mathrm{III}-\mathrm{R}, \mathrm{IV}-\mathrm{S}$ (B) $\mathrm{I}-\mathrm{S}, \mathrm{II}-\mathrm{P}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{R}$ (C) $\mathrm{I}-\mathrm{Q}, \mathrm{II}-\mathrm{R}, \mathrm{III}-\mathrm{S}, \mathrm{IV}-\mathrm{P}$ (D) \(I-R . I I-S . I I I-P . I V-O\)

In an experiment to determine photoelectric characteristics for a metal the intensity of radiation is kept constant. Starting with threshold frequency. Now, frequency of incident radiation is increased. It is observed that $\ldots \ldots \ldots$ (A) the number of photoelectrons increases (B) the energy of photoelectrons decreases (C) the number of photoelectrons decreases (D) the energy of photoelectrons increases.

\(11 \times 10^{11}\) Photons are incident on a surface in \(10 \mathrm{~s}\). These photons correspond to a wavelength of \(10 \AA\). If the surface area of the given surface is \(0.01 \mathrm{~m}^{2}\), the intensity of given radiations is \(\ldots \ldots\) $\left\\{\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right\\}$ (A) \(21.86 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\) (B) \(2.186 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\) (C) \(218.6 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\) (D) \(2186 \times 10^{-3}\left(\mathrm{~W} / \mathrm{m}^{2}\right)\)

Wavelength of an electron having energy \(10 \mathrm{ke} \mathrm{V}\) is $\ldots \ldots . \AA$ (A) \(0.12\) (B) \(1.2\) (C) 12 (D) 120

Kinetic energy of proton accelerated under p.d. \(1 \mathrm{~V}\) will be........ (A) \(1840 \mathrm{eV}\) (B) \(13.6 \mathrm{eV}\) (C) \(1 \mathrm{eV}\) (D) \(0.54 \mathrm{eV}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free