Chapter 17: Problem 2327
If kinetic energy of free electron is made double, change in de-Broglie wavelength will be........... (A) \(\sqrt{2}\) (B) \((1 / \sqrt{2})\) (C) 2 (D) \((1 / 2)\)
Chapter 17: Problem 2327
If kinetic energy of free electron is made double, change in de-Broglie wavelength will be........... (A) \(\sqrt{2}\) (B) \((1 / \sqrt{2})\) (C) 2 (D) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\propto\) -particle and proton are accelerated through the same potential difference, then the ratio of de Brogile wavelength of \(\propto\) -particle and proton is \(\ldots \ldots \ldots\) (A) \((1 / \sqrt{2})\) (B) \(\sqrt{2}\) (C) \(\\{1 /(2 \sqrt{2})\\}\) (D) \(2 \sqrt{2}\)
Uncertainty of momentum of particle is $10^{-3} \mathrm{~kg} \mathrm{~ms}^{-1}\( so minimum uncertainty in its position is \)\ldots \ldots \mathrm{m}$. (A) \(10^{-8} \mathrm{~m}\) (B) \(10^{-12} \mathrm{~m}\) (C) \(10^{-16} \mathrm{~m}\) (D) \(10^{-4} \mathrm{~m}\)
For wave concerned with proton, de-Broglie wavelength change by \(0.25 \%\). If its momentum changes by \(\mathrm{P}_{\mathrm{O}}\) initial momentum $=\ldots \ldots \ldots$ (A) \(100 \mathrm{P}_{\mathrm{O}}\) (B) \(\left\\{\mathrm{P}_{\mathrm{O}} / 400\right\\}\) (C) \(401 \mathrm{P}_{\mathrm{O}}\) (D) \(\left\\{\mathrm{P}_{\mathrm{O}} / 100\right\\}\)
Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (I) Energy of photon of wavelength \(\lambda\) is (P) \((\mathrm{E} / \mathrm{p})\) (II) The de Broglie wavelength associated (Q) \(\left(\mathrm{hf} / \mathrm{c}^{2}\right)\) with particle of momentum \(\mathrm{P}\) is (II) Mass of photon in motion is (R) (hc \(/ \lambda\) ) (IV) The velocity of photon of energy (S) \((\mathrm{h} / \mathrm{p})\) \(\mathrm{E}\) and momentum \(\mathrm{P}\) is (A) I - P, II - Q. III - R, IV - S (B) $\mathrm{I}-\mathrm{R}, \mathrm{II}-\mathrm{S}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{P}$ (C) $\mathrm{I}-\mathrm{R}, \mathrm{II}-\mathrm{S}, \mathrm{III}-\mathrm{P}_{3} \mathrm{IV}-\mathrm{Q}$ (D) $\mathrm{I}-\mathrm{S}, \mathrm{II}-\mathrm{R}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{P}$
If \(\propto\) -particle and proton have same velocities, the ratio of de Broglie wavelength of \(\propto\) -particle and proton is \(\ldots \ldots\) (A) \((1 / 4)\) (B) \((1 / 2)\) (C) 1 (D) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.