Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When electric bulb having \(100 \mathrm{~W}\) efficiency emits photon having wavelength \(540 \mathrm{~nm}\) every second, numbers of photons will be $\ldots \ldots\left(\mathrm{h}=6 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right)$ (A) 100 (B) 1000 (C) \(3 \times 10^{20}\) (D) \(3 \times 10^{18}\)

Short Answer

Expert verified
The number of photons emitted per second by the electric bulb is \(3 \times 10^{20}\).

Step by step solution

01

Write down the energy of a single photon formula

To find the energy of a single photon, we use the following formula: \[E = \dfrac{hc}{\lambda}\] where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon.
02

Calculate the energy of a single photon

Plug the given values into the formula and solve for the energy of a single photon: \[E = \dfrac{(6 \times 10^{-34} \, J \cdot s)(3 \times 10^8 \, ms^{-1})}{540 \times 10^{-9} \, m}\] \[E = 3.33 \times 10^{-19} \, J\]
03

Write down the formula to find the number of photons emitted per second

To determine the number of photons emitted per second, we need to divide the total energy emitted per second (Power of the bulb) by the energy of a single photon: \[N=\dfrac{P}{E}\] where N is the number of photons emitted per second, P is the power of the bulb (efficiency), and E is the energy of a single photon.
04

Calculate the number of photons emitted per second

Plug the values calculated in the previous steps and the given power of the bulb (100 W) into the formula and solve for the number of photons per second: \[N=\dfrac{100 \, J/s}{3.33 \times 10^{-19} \, J}\] \[N = 3 \times 10^{20}\] So, the number of photons emitted per second is \(3 \times 10^{20}\). The correct option is (C).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Work function of metal is \(4.2 \mathrm{eV}\) If ultraviolet radiation (photon) having energy \(6.2 \mathrm{eV}\), stopping potential will be........ (A) \(2 \mathrm{eV}\) (B) \(2 \mathrm{~V}\) (C) 0 (d) \(10.4 \mathrm{~V}\)

Energy corresponding to threshed frequency of metal is \(6.2 \mathrm{eV}\). If stopping potential corresponding to radiation incident on surface is $5 \mathrm{~V}\(, incident radiation will be in the \)\ldots \ldots \ldots \ldots \ldots$ region. (A) X-ray (B) Ultraviolet (C) infrared (D) Visible

Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (I) Energy of photon of wavelength \(\lambda\) is (P) \((\mathrm{E} / \mathrm{p})\) (II) The de Broglie wavelength associated (Q) \(\left(\mathrm{hf} / \mathrm{c}^{2}\right)\) with particle of momentum \(\mathrm{P}\) is (II) Mass of photon in motion is (R) (hc \(/ \lambda\) ) (IV) The velocity of photon of energy (S) \((\mathrm{h} / \mathrm{p})\) \(\mathrm{E}\) and momentum \(\mathrm{P}\) is (A) I - P, II - Q. III - R, IV - S (B) $\mathrm{I}-\mathrm{R}, \mathrm{II}-\mathrm{S}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{P}$ (C) $\mathrm{I}-\mathrm{R}, \mathrm{II}-\mathrm{S}, \mathrm{III}-\mathrm{P}_{3} \mathrm{IV}-\mathrm{Q}$ (D) $\mathrm{I}-\mathrm{S}, \mathrm{II}-\mathrm{R}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{P}$

In an experiment to determine photoelectric characteristics for a metal the intensity of radiation is kept constant. Starting with threshold frequency. Now, frequency of incident radiation is increased. It is observed that $\ldots \ldots \ldots$ (A) the number of photoelectrons increases (B) the energy of photoelectrons decreases (C) the number of photoelectrons decreases (D) the energy of photoelectrons increases.

Matching type questions: (Match, Column-I and Column-II property) Column-I Column-II (I) Quantization of charge (P) Diffraction of light (II) Wave nature of light (Q) de Broglie hypothesis (III) Dual nature of matter (R) Photo-electric effect (IV) Particle nature of light (S) Millikan's drop experiment (A) $\mathrm{I}-\mathrm{P}, \mathrm{II}-\mathrm{Q}, \mathrm{III}-\mathrm{R}, \mathrm{IV}-\mathrm{S}$ (B) $\mathrm{I}-\mathrm{S}, \mathrm{II}-\mathrm{P}, \mathrm{III}-\mathrm{Q}, \mathrm{IV}-\mathrm{R}$ (C) $\mathrm{I}-\mathrm{Q}, \mathrm{II}-\mathrm{R}, \mathrm{III}-\mathrm{S}, \mathrm{IV}-\mathrm{P}$ (D) \(I-R . I I-S . I I I-P . I V-O\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free