Chapter 16: Problem 2285
Wave light travels from an optically rarer medium to an optically denser medium its velocity decrease because of change in (A) frequency (B) wavelength (C) amplitude (D) phase
Chapter 16: Problem 2285
Wave light travels from an optically rarer medium to an optically denser medium its velocity decrease because of change in (A) frequency (B) wavelength (C) amplitude (D) phase
All the tools & learning materials you need for study success - in one app.
Get started for freeFor a prism of refractive index \(\sqrt{3}\), the angle of minimum deviation is equitation is equal to the angle of prism, then angle of the prism is (A) \(60^{\circ}\) (B) \(90^{\circ}\) (C) \(45^{\circ}\) (D) \(180^{\circ}\)
Ordinary light incident on a glass slab at the polarizing angle, suffers a deviation of \(22^{\circ}\). The value of angle of refraction in this case is (A) \(44^{\circ}\) (B) \(34^{\circ}\) (C) \(22^{\circ}\) (D) \(11^{\circ}\)
$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) Minimum deviation } & \text { (a) }(\mathrm{n}-1) \mathrm{A}+\left(\mathrm{n}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \\ \text { (ii) Angular dispersion } & \text { (b) }\left[\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) /(\mathrm{n}-1)\right] \\ \text { (iii) Dispersive power } & \text { (c) }\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) \mathrm{A} \\ \text { (iv) Condition for no deviation } & \text { (d) }(\mathrm{n}-1) \mathrm{A} \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), ii \(-b\), iv-a (B) \(i-a, 1 i-b\), iii \(-c\), iv-d (C) \(i-c\), ii \(-b\), ii \(-a\), iv-d (D) $\mathrm{i}-\mathrm{d}, \mathrm{i} i-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iv}-\mathrm{a}$
Relation between critical angle of water \(C_{w}\) and that of the glass \(\mathrm{C}_{\mathrm{g}}\) is (given, $\left.\mathrm{n}_{\mathrm{w}}=(4 / 3), \mathrm{n}_{\mathrm{g}}=1.5\right)$ (A) \(\mathrm{C}_{\mathrm{w}}<\mathrm{C}_{\mathrm{g}}\) (B) \(\mathrm{C}_{\mathrm{w}}=\mathrm{C}_{\mathrm{g}}\) (C) \(\mathrm{C}_{\mathrm{w}}>\mathrm{C}_{\mathrm{g}}\) (D) \(\mathrm{C}_{\mathrm{w}}=\mathrm{C}_{\mathrm{g}}=\mathrm{O}\)
In a fraunhofer diffraction by single slit of width d with incident light of wavelength \(5500 \AA\) the first minimum is observed at angle of \(30^{\circ}\). The first secondary maximum is observed at an angle \(\theta=\) (A) \(\sin ^{-1}(1 / \sqrt{2})\) (B) \(\sin ^{-1}(3 / 4)\) (C) \(\sin ^{-1}(\sqrt{3} / 2)\) (D) \(\sin ^{-1}(1 / 4)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.