Chapter 16: Problem 2231
In which of the following cases a man will not see image greater than himself. (A) convex mirror (B) concave mirror (C) plane mirror (D) none of these
Chapter 16: Problem 2231
In which of the following cases a man will not see image greater than himself. (A) convex mirror (B) concave mirror (C) plane mirror (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe power of plane glass is (A) \(\infty\) (B) 0 (C) \(\overline{2 \mathrm{D}}\) (D) \(4 \mathrm{D}\)
If thin prism of \(5^{\circ}\) gives a deviation of \(2^{\circ}\) then the refractive index of material of prism is (A) \(1.4\) (B) \(1.5\) (C) \(1.6\) (D) \(1.0\)
In young's double slit experiment if the width of \(3^{\text {rd }}\) fringe is \(10^{-2} \mathrm{~cm}\), then the width of \(5^{\text {th }}\) fringe will be \(\mathrm{cm} .\) (A) \(10^{-2}\) (B) \(5 \times 10^{-2}\) (C) \(2 \times 10^{-2}\) (D) \(10^{+2}\)
$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) Minimum deviation } & \text { (a) }(\mathrm{n}-1) \mathrm{A}+\left(\mathrm{n}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \\ \text { (ii) Angular dispersion } & \text { (b) }\left[\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) /(\mathrm{n}-1)\right] \\ \text { (iii) Dispersive power } & \text { (c) }\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) \mathrm{A} \\ \text { (iv) Condition for no deviation } & \text { (d) }(\mathrm{n}-1) \mathrm{A} \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), ii \(-b\), iv-a (B) \(i-a, 1 i-b\), iii \(-c\), iv-d (C) \(i-c\), ii \(-b\), ii \(-a\), iv-d (D) $\mathrm{i}-\mathrm{d}, \mathrm{i} i-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iv}-\mathrm{a}$
A concave mirror of focal length \(20 \mathrm{~cm}\) forms an virtual image having twice the linear dimensions of the object, the position of the object will be \(\mathrm{cm}\) (A) \(7.5\) (B) \(-10\) (C) 10 (D) \(-7.5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.