$$
\begin{array}{|l|l|}
\hline \text { Column - I } & \text { Column - II } \\
\hline \text { (i) Minimum deviation } & \text { (a) }(\mathrm{n}-1)
\mathrm{A}+\left(\mathrm{n}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \\
\text { (ii) Angular dispersion } & \text { (b)
}\left[\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right)
/(\mathrm{n}-1)\right] \\
\text { (iii) Dispersive power } & \text { (c)
}\left(\mathrm{n}_{\mathrm{v}}-\mathrm{n}_{\mathrm{r}}\right) \mathrm{A} \\
\text { (iv) Condition for no deviation } & \text { (d) }(\mathrm{n}-1)
\mathrm{A} \\
\hline
\end{array}
$$
(A) \(i-c\), ii \(-d\), ii \(-b\), iv-a
(B) \(i-a, 1 i-b\), iii \(-c\), iv-d
(C) \(i-c\), ii \(-b\), ii \(-a\), iv-d
(D) \(\mathrm{i}-\mathrm{d}, \mathrm{i} i-\mathrm{c}, \mathrm{ii}-\mathrm{b},
\mathrm{iv}-\mathrm{a}\)