Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A ray of light is incident at an angle \(30^{\circ}\) on a mirror, The angle between normal and reflected ray is (A) \(15^{\circ}\) (B) \(30^{\circ}\) (C) \(45^{\circ}\) (D) \(60^{\circ}\)

Short Answer

Expert verified
The angle between the normal and the reflected ray is \(60^{\circ}\), corresponding to option (D).

Step by step solution

01

Write down the given information

We are given that the angle of incidence, which we will denote as \(i\), is \(30^{\circ}\). We are tasked with finding the angle between the normal and reflected ray.
02

Apply the law of reflection

According to the law of reflection, the angle of incidence is equal to the angle of reflection. This means that the angle of reflection, which we will denote as \(r\), is also \(30^{\circ}\).
03

Calculate the angle between the normal and reflected ray

Since we know that both the angle of incidence and the angle of reflection are \(30^{\circ}\) and the normal is perpendicular to the mirror, the angle between the normal and the reflected ray can be found by calculating the sum of the angle of incidence and the angle of reflection: \(30^{\circ} + 30^{\circ} = 60^{\circ}\) Therefore, the angle between the normal and the reflected ray is \(60^{\circ}\), which corresponds to option (D).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A Sound wave travels from air to water. The angle of incidence is \(\alpha_{1}\) and the angle of reflection is \(\alpha_{2}\) If the snell's Law is valid then, (A) \(\alpha_{1} \geq \alpha_{2}\) (B) \(\alpha_{1}=\alpha_{2}\) (C) \(\alpha_{1}>\alpha_{2}\) (D) \(\alpha_{1}<\alpha_{2}\)

A concave lens forms the image of an object such that the distance between the object and the image is \(10 \mathrm{~cm}\) and the magnification produced is \((1 / 4)\), the focal length of lens will be \(\mathrm{cm}\) (A) - 6.2 (B) \(-12.4\) (C) \(-4.4\) (D) \(-8.8\)

The magnifying power of objective of a compound microscope is \(5.0\) If the magnifying power of microscope is 30 , then magnifying power of eye-piece will be (A) 3 (B) 6 (C) 9 (D) 12

$$ \begin{array}{|l|l|} \hline \text { Column - I } & \text { Column - II } \\ \hline \text { (i) While going from rarer to denser medium } & \text { (a) Wavelength changes } \\ \text { (ii) While going from denser to rarer medium } & \text { (b) } \eta=(\mathrm{C} / \mathrm{V}) \\ \text { (iii) While going to one medium to another } & \text { (C) Ray bends towards normal } \\ \text { (iv) Refractive index of medium } & \text { (D) Rav bends awav from normal } \\ \hline \end{array} $$ (A) \(i-c\), ii \(-d\), iii \(-b\), iv-a (B) \(\mathrm{i}-\mathrm{a}\), ii \(-\mathrm{b}\), iii $-\mathrm{c}, \mathrm{iv}-\mathrm{d}$ (C) $\mathrm{i}-\mathrm{c}, \mathrm{ii}-\mathrm{b}, \mathrm{iii}-\mathrm{a}, \mathrm{iv}-\mathrm{d}$ (D) \(i-d, 1 i-c, 11 i-b, i v-a\)

In young's double slit experiment if the width of \(3^{\text {rd }}\) fringe is \(10^{-2} \mathrm{~cm}\), then the width of \(5^{\text {th }}\) fringe will be \(\mathrm{cm} .\) (A) \(10^{-2}\) (B) \(5 \times 10^{-2}\) (C) \(2 \times 10^{-2}\) (D) \(10^{+2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free