Chapter 15: Problem 2207
was the first to predict the existence of electromagnetic waves. (A) Maxwell (B) Faraday (C) Ampere (D) hertz
Chapter 15: Problem 2207
was the first to predict the existence of electromagnetic waves. (A) Maxwell (B) Faraday (C) Ampere (D) hertz
All the tools & learning materials you need for study success - in one app.
Get started for freeThe dimensional formula of energy density is (A) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-3}\) (D) \(\mathrm{M}^{\mathrm{l}} \mathrm{L}^{0} \mathrm{~T}^{-3}\)
The waves used in communication are generally called (A) \(\gamma\) rays (B) \(\alpha\) rays (C) microwaves (D) radiowaves
Maxwells equations are derived from the laws of (A) electricity (B) magnetism (C) both electricity and magnetism (D) mechanics
Dimensional formula of intensity of radiation is (A) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}\) (D) \(\overline{\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}}\)
If the electric field associated with a radiation of frequency $10 \mathrm{MH} z\( is \)\mathrm{E}=10 \sin (\mathrm{kx}-\omega \mathrm{t}) \mathrm{mV} / \mathrm{m}$ then its energy density is $\mathrm{Jm}^{-3}\left(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$ (A) \(4.425 \times 10^{-10}\) (B) \(6.26 \times 10^{-14}\) (C) \(8.85 \times 10^{-16}\) (D) \(8.85 \times 10^{-14}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.