Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Bolometer is used to detect (A) infrared rays (B) ultraviolet rays (C) x rays (D) \(\gamma\) rays

Short Answer

Expert verified
A Bolometer is a sensitive instrument used to measure the intensity of radiation by the amount of heat it produces when it is absorbed by a material. Bolometers are particularly sensitive to long-wavelength radiation, specifically infrared radiation. Thus, the correct answer is (A) infrared rays.

Step by step solution

01

Understand what a Bolometer is

A Bolometer is a sensitive instrument used to measure the intensity of radiation by the amount of heat it produces when it is absorbed by a material. It typically consists of an absorptive element connected to a thermal reservoir through a thermal link. The temperature change of the absorptive element is then measured, which is proportional to the power of the incident radiation.
02

Determine the type of radiation detected by a Bolometer

Bolometers are particularly sensitive to long-wavelength radiation, specifically infrared radiation. This is because the longer wavelengths are more readily absorbed by the material in the Bolometer, leading to a greater temperature change and thus a stronger signal. Additionally, Bolometers have been widely used in astronomical and earth remote sensing applications for detecting infrared radiation. Therefore, the correct answer is: (A) infrared rays

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Electromagnetic waves travelling in a medium which has relative permeability \(1.3\) and relative permittivity \(2.14\) speed of electromagnetic waves in this medium will be (A) \(3.6 \times 10^{8} \mathrm{~m} / \mathrm{s}\) (B) \(1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}\) (C) \(1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}\) (D) \(13.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\)

The dimensional formula of energy density is (A) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-3}\) (D) \(\mathrm{M}^{\mathrm{l}} \mathrm{L}^{0} \mathrm{~T}^{-3}\)

The frequency of an electromagnetic wave in free space 15 \(3 \mathrm{MHz}\). When it passes through a medium of relative permeability \(\varepsilon_{\mathrm{r}}=4.0\), then its frequency (A) becomes half (B) become doubled (C) remain same (D) become \(\sqrt{2}\) times

In an electromagnetic wave, if the amplitude of magnetic field is $3 \times 10^{-10} \mathrm{~T}$, the amplitude of the associated electric field will be (A) \(9 \times 10^{-2} \overline{\mathrm{Vm}^{-1}}\) (B) \(3 \times 10^{-10} \mathrm{Vm}^{-1}\) (C) \(3 \times 10^{-2} \mathrm{Vm}^{-1}\) (D) \(1 \times 10^{-18} \mathrm{Vm}^{-1}\)

The maximum value of \(\mathrm{E}^{-}\) in an electromagnetic waves in air is equal to \(6.0 \times 10^{-4} \mathrm{Vm}^{-1}\). The maximum value of \(\mathrm{B}^{-}\) is (A) \(1.8 \times 10^{5} \mathrm{~T}\) (B) \(2.0 \times 10^{4} \mathrm{~T}\) (C) \(2.0 \times 10^{-12} \mathrm{~T}\) (D) \(1.8 \times 10^{13} \mathrm{~T}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free