Chapter 15: Problem 2188
Bolometer is used to detect (A) infrared rays (B) ultraviolet rays (C) x rays (D) \(\gamma\) rays
Chapter 15: Problem 2188
Bolometer is used to detect (A) infrared rays (B) ultraviolet rays (C) x rays (D) \(\gamma\) rays
All the tools & learning materials you need for study success - in one app.
Get started for freeElectromagnetic waves travelling in a medium which has relative permeability \(1.3\) and relative permittivity \(2.14\) speed of electromagnetic waves in this medium will be (A) \(3.6 \times 10^{8} \mathrm{~m} / \mathrm{s}\) (B) \(1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}\) (C) \(1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}\) (D) \(13.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\)
The dimensional formula of energy density is (A) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-3}\) (D) \(\mathrm{M}^{\mathrm{l}} \mathrm{L}^{0} \mathrm{~T}^{-3}\)
The frequency of an electromagnetic wave in free space 15 \(3 \mathrm{MHz}\). When it passes through a medium of relative permeability \(\varepsilon_{\mathrm{r}}=4.0\), then its frequency (A) becomes half (B) become doubled (C) remain same (D) become \(\sqrt{2}\) times
In an electromagnetic wave, if the amplitude of magnetic field is $3 \times 10^{-10} \mathrm{~T}$, the amplitude of the associated electric field will be (A) \(9 \times 10^{-2} \overline{\mathrm{Vm}^{-1}}\) (B) \(3 \times 10^{-10} \mathrm{Vm}^{-1}\) (C) \(3 \times 10^{-2} \mathrm{Vm}^{-1}\) (D) \(1 \times 10^{-18} \mathrm{Vm}^{-1}\)
The maximum value of \(\mathrm{E}^{-}\) in an electromagnetic waves in air is equal to \(6.0 \times 10^{-4} \mathrm{Vm}^{-1}\). The maximum value of \(\mathrm{B}^{-}\) is (A) \(1.8 \times 10^{5} \mathrm{~T}\) (B) \(2.0 \times 10^{4} \mathrm{~T}\) (C) \(2.0 \times 10^{-12} \mathrm{~T}\) (D) \(1.8 \times 10^{13} \mathrm{~T}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.