Chapter 15: Problem 2165
An electric charge oscillating with a frequency of 1 kilo cycles/s can radiates electromagnetic waves of wavelength (A) \(100 \mathrm{~km}\) (B) \(200 \mathrm{~km}\) (C) \(300 \mathrm{~km}\) (D) \(400 \mathrm{~km}\)
Chapter 15: Problem 2165
An electric charge oscillating with a frequency of 1 kilo cycles/s can radiates electromagnetic waves of wavelength (A) \(100 \mathrm{~km}\) (B) \(200 \mathrm{~km}\) (C) \(300 \mathrm{~km}\) (D) \(400 \mathrm{~km}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA plane electromagnetic wave is incident on a material surface. If the wave delivers momentum \(p\) and energy \(E\), then (A) \(p=0, E=0\) (B) \(p \neq 0, E \neq 0\) (C) \(p \neq 0, E=0\) (D) \(p=0, E \neq 0\)
If the wavelength of light is \(4000^{\circ} \mathrm{A}\) then the number of waves in \(1 \mathrm{~mm}\) length will be (A) \(2.5\) (B) 2500 (C) 250 (D) 25000
Relation between amplitudes of electric and Magnetic field is (A) \(E_{0}=B_{0}\) (B) \(E_{0}=\mathrm{cB}_{0}\) (C) \(E_{0}=\left(B_{0} / c\right)\) (D) \(E_{0}=\left(\mathrm{c} / \mathrm{B}_{0}\right)\)
An electromagnetic wave going through vacuum is described by $E=E_{0} \sin (k x-\omega t)\( then \)B=B_{0} \sin (k x-\omega t)$ then (A) \(E_{0} B_{0}=\operatorname{cok}\) (B) \(E_{0} k=B_{0} \omega\) (C) \(\mathrm{E}_{0} \mathrm{~m}=\mathrm{B}_{0} \mathrm{k}\) (D) none of these
Energy density of an electromagnetic wave of intensity \(0.02 \mathrm{Wm}^{-2}\) is (A) \(6.67 \times 10^{-11} \mathrm{Jm}^{-3}\) (B) \(6 \times 10^{6} \mathrm{Jm}^{-3}\) (C) \(1.5 \times 10^{10} \mathrm{Jm}^{-3}\) (D) none of the above
What do you think about this solution?
We value your feedback to improve our textbook solutions.