Chapter 15: Problem 2160
The velocity of light in vacuum can be changed by changing (A) frequency (B) wavelength (C) amplitude (D) none of these
Chapter 15: Problem 2160
The velocity of light in vacuum can be changed by changing (A) frequency (B) wavelength (C) amplitude (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following waves are not transverse in nature? (A) light emitted from a sodium lamp (B) sound waves travelling in air (C) \(\mathrm{x}\) rays from an \(\mathrm{x}\) ray machine (D) microwaves used in radar
Which of the following pairs of the component of space and time varying $\mathrm{E}^{-}=\left(\mathrm{E}_{\mathrm{x}} \mathrm{i} \wedge+\mathrm{Eyj} \wedge+\mathrm{Ezk} \wedge\right)$ and $\mathrm{B}^{-}=\left(\mathrm{B}_{\mathrm{x}} \mathrm{i}^{\mathrm{i}}+\mathrm{Byj}^{\wedge}+\mathrm{Bzk} \wedge\right)$ would generate a plane electromagnetic wave travelling in \(+\) ve \(z\) direction (A) \(E x, B y\) (B) \(\mathrm{Ey}, \mathrm{Bz}\) (C) \(\mathrm{Ex}, \mathrm{Bz}\) (D) \(E z, B x\)
The sun delivers \(10^{3} \mathrm{Wm}^{-2}\) of electromagnetic flux to earth's surface. The total power that is incident on a roof of dimension $8 \mathrm{~m} \times 20 \mathrm{~m}$ will be (A) \(4 \times 10^{5} \mathrm{w}\) (B) \(2.56 \times 10^{4} \mathrm{w}\) (C) \(6.4 \times 10^{5} \mathrm{w}\) (D) \(1.6 \times 10^{5} \mathrm{w}\)
If \(\lambda_{\gamma} \lambda_{\mathrm{x}}\) and \(\lambda_{\mathrm{m}}\) are the wave lengths of the \(\gamma\) -rays, \(\mathrm{x}\) rays and micro waves respectively in space then (A) \(\lambda_{\gamma}>\lambda_{\mathrm{x}}>\lambda_{\mathrm{m}}\) (B) \(\lambda_{\gamma}<\lambda_{\mathrm{x}}<\lambda_{\mathrm{m}}\) (C) \(\lambda_{r}=\lambda_{x}=\lambda_{m}\) (D) \(\lambda_{\gamma}<\lambda_{\mathrm{m}}<\lambda_{\mathrm{x}}\)
Relation between amplitudes of electric and Magnetic field is (A) \(E_{0}=B_{0}\) (B) \(E_{0}=\mathrm{cB}_{0}\) (C) \(E_{0}=\left(B_{0} / c\right)\) (D) \(E_{0}=\left(\mathrm{c} / \mathrm{B}_{0}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.