Chapter 15: Problem 2134
The frequency of electromagnetic wave having wavelength \(25 \mathrm{~mm}\) is \(\quad \mathrm{Hz}\) (A) \(1.2 \times \overline{10^{10}}\) (B) \(7.5 \times 10^{5}\) (C) \(1.2 \times 10^{8}\) (D) \(7.5 \times 10^{6}\)
Chapter 15: Problem 2134
The frequency of electromagnetic wave having wavelength \(25 \mathrm{~mm}\) is \(\quad \mathrm{Hz}\) (A) \(1.2 \times \overline{10^{10}}\) (B) \(7.5 \times 10^{5}\) (C) \(1.2 \times 10^{8}\) (D) \(7.5 \times 10^{6}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA plane electromagnetic wave of frequency \(25 \mathrm{MHz}\) travels in free space along the \(\mathrm{x}\) direction. At a particular point in space and time \(\mathrm{E}^{-}=6.3 \mathrm{j} \wedge \mathrm{Vm}^{-1}\) then \(\mathrm{B}^{-}\) at this point is (A) \(2.1 \times 10^{-8}\) i \(\mathrm{T}\) (B) \(2.1 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (C) \(1.89 \times 10^{9} \mathrm{k} \wedge \mathrm{T}\) (D) \(2.52 \times 10^{-7} \mathrm{k} \wedge \mathrm{T}\)
The maximum electric field in a plane electromagnetic wave is $900 \mathrm{NC}^{-1}\(. The wave is going in the \)\mathrm{x}$ direction and the electric field is in the y direction. The maximum magnetic field in the wave is \(\mathrm{T}\) (A) \(3 \times 10^{-8}\) (B) \(3 \overline{\times 10^{-6}}\) (C) \(27 \times 10^{-6}\) (D) $27 \times 10^{10}$
The dimensional formula of energy density is (A) \(\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\) (B) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\) (C) \(\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-3}\) (D) \(\mathrm{M}^{\mathrm{l}} \mathrm{L}^{0} \mathrm{~T}^{-3}\)
What oscillates in an electromagnetic wave? (A) \(\mathrm{E}^{-}\) and \(\mathrm{B}^{-}\) (B) \(\mathrm{B}^{-}\) (C) \(E^{-}\) (D) none of these
Relation between amplitudes of electric and Magnetic field is (A) \(E_{0}=B_{0}\) (B) \(E_{0}=\mathrm{cB}_{0}\) (C) \(E_{0}=\left(B_{0} / c\right)\) (D) \(E_{0}=\left(\mathrm{c} / \mathrm{B}_{0}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.