Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The power factor of an ac circuit having resistance \((\mathrm{R})\) and inductance (L) connected in series and an angular velocity w is, (a) \((\mathrm{R} / \mathrm{cL})\) (b) $\left[\mathrm{R} /\left\\{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}\right\\}^{(1 / 2)}\right]$ (c) \((\omega L / R)\) (d) $\left[\mathrm{R} /\left\\{\mathrm{R}^{2}-\omega^{2} \mathrm{~L}^{2}\right\\}^{(1 / 2)}\right]$

Short Answer

Expert verified
The short answer to the question is: The power factor of an AC circuit having resistance R and inductance L connected in series and an angular velocity ω is (b) $\left[\mathrm{R} /\left\\{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}\right\\}^{(1 / 2)}\right]$.

Step by step solution

01

Calculate the impedance of the circuit

For a series R-L circuit, the impedance Z is given by the following formula: \[Z = \sqrt{R^2 + (ωL)^2}\]
02

Obtain the angle between voltage and current phasors (θ)

The angle θ can be calculated using: \[\tan θ = \frac{ωL}{R}\] Now, we can find the cosine of the angle θ, which is the power factor: \[PF = \cos θ\] Since \[\cos θ = \frac{1}{\sqrt{1 + \tan^2 θ}}\], we can substitute the expression for tan θ.
03

Calculate the power factor using the angle θ

Now, let's substitute the expression for tan θ and simplify: \[PF = \frac{1}{\sqrt{1 + (\frac{ωL}{R})^2}}\] \[PF = \frac{1}{\sqrt{1 + \frac{ω^2L^2}{R^2}}}\] \[PF = \frac{R}{\sqrt{R^2 + ω^2L^2}}\] So, the correct answer is: (b) $\left[\mathrm{R} /\left\\{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}\right\\}^{(1 / 2)}\right]$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An LC circuit contains a \(20 \mathrm{mH}\) inductor and a \(50 \mu \mathrm{F}\) capacitor with an initial charge of \(10 \mathrm{mc}\). The resistance of the circuit is negligible. At the instant the circuit is closed be \(t=0 .\) At what time is the energy stored completely magnetic. (a) \(\mathrm{t}=0 \mathrm{~ms}\) (b) \(\mathrm{t}=1.54 \mathrm{~ms}\) (c) \(\mathrm{t}=3.14 \mathrm{~ms}\) (d) \(\mathrm{t}=6.28 \mathrm{~ms}\)

In a region of uniform magnetic induction \(\mathrm{B}=10^{-2}\) tesla, a circular coil of radius \(30 \mathrm{~cm}\) and resistance \(\pi^{2}\) ohm is rotated about an axis which is perpendicular to the direction of \(\mathrm{B}\) and which forms a diameter of the coil. If the coil rotates at $200 \mathrm{rpm}$ the amplitude of the alternating current induced in the coil is, (a) \(4 \pi^{2} \mathrm{~mA}\) (b) \(30 \mathrm{~mA}\) (c) \(6 \mathrm{~mA}\) (d) \(200 \mathrm{~mA}\)

In an LCR series ac circuit the voltage across each of the components \(\mathrm{L}, \mathrm{C}\) and \(\mathrm{R}\) is \(50 \mathrm{~V}\). The voltage across the LC combination will be (a) \(50 \mathrm{~V}\) (b) \(50 \sqrt{2} \mathrm{~V}\) (c) \(100 \mathrm{~V}\) (d) \(0 \mathrm{~V}\) (zero)

An alternating voltage is represented as \(\mathrm{E}=20 \sin 300 \mathrm{t}\). The average value of voltage over one cycle will be. (a) zero (b) 10 volt (c) \(20 \sqrt{2}\) volt (d) \((20 / \sqrt{2})\) volt

The quality factor of LCR circuit having resistance \((\mathrm{R})\) and inductance ( \(\mathrm{L}\) ) at resonance frequency \((\infty)\) is given by (a) \((\mathrm{cL} / \mathrm{R})\) (b) \((\mathrm{R} / \mathrm{cL})\) (c) \((\mathrm{coL} / \mathrm{R})^{(1 / 2)}\) (d) \((0 / L)^{2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free