Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The power factor of a good choke coil is (a) Nearly zero (b) Exactly zero (c) Nearly one (d) Exactly one

Short Answer

Expert verified
The power factor of a good choke coil is (a) nearly zero, as it has very large inductive reactance (XL) compared to its resistance (R), making the ratio \(PF = \frac{R}{X_L}\) very small or close to zero.

Step by step solution

01

Analyze the given formula

Recall the power factor formula: \(PF = \frac{R}{\sqrt{R^2 + X_L^2}}\) As a good choke coil has very large inductive reactance (XL) compared to its resistance (R), we can deduce that: \(X_L >> R\) Now, let's analyze the power factor formula with this condition.
02

Apply the condition and evaluate the formula

Since \(X_L >> R\), we can consider \(R^2 + X_L^2 \approx X_L^2\). So, the power factor formula becomes: \(PF = \frac{R}{\sqrt{X_L^2}}\) We notice that the denominator now becomes an absolute inductive reactance value, which is significantly larger than resistance.
03

Compare the numerator and denominator

Now, we can simplify the formula: \(PF = \frac{R}{X_L}\) Given that the inductive reactance of a good choke coil (XL) is very large compared to its resistance (R), we can deduce that the ratio of R to XL will be very small or close to zero.
04

Choose the correct option

Since the power factor is very small or close to zero, the correct answer is (a) nearly zero.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When 100 volt dc is applied across a coil, a current of \(1 \mathrm{~A}\) flows through it. When 100 volt ac at 50 cycle \(\mathrm{s}^{-1}\) is applied to the same coil, only \(0.5\) A current flows. The impedance of the coil is, (a) \(100 \Omega\) (b) \(200 \Omega\) (c) \(300 \Omega\) (d) \(400 \Omega\)

In general in an alternating current circuit. (a) The average value of current is zero. (b) The average value of square of current is zero. (c) Average power dissipation is zero. (d) The phase difference between voltage and current is zero.

A ring of radius \(\mathrm{r}\) is rotating about its diameter with angular velocity w in a perpendicular magnetic field \(\mathrm{B}^{-}\) It has 20 turns. The emf induced is (a) \(20 \mathrm{~B} \pi \mathrm{r}^{2} \sin \mathrm{wt}\) (b) \(20 \mathrm{~B} \pi \mathrm{r}^{2} \mathrm{cos} \mathrm{wt}\) (c) \(10 \sqrt{2} \mathrm{~B} \pi \mathrm{r}^{2}\) (d) \(20 \mathrm{~B} \pi \mathrm{r}^{2} \mathrm{w} \sin \mathrm{wt}\)

The self inductance of a coil is \(5 \mathrm{H}\), a current of \(1 \mathrm{~A}\) changes to \(2 \mathrm{~A}\) within \(5 \mathrm{sec}\). through the coil. The value of induced emf will be \(\ldots \ldots\) (a) \(10 \mathrm{~V}\) (b) \(0.1 \mathrm{~V}\) (c) \(1 \mathrm{~V}\) (d) \(100 \mathrm{~V}\)

The instantaneous value of current in an \(\mathrm{AC}\). circuit is \(\mathrm{I}=2 \sin [100 \pi \mathrm{t}+(\pi / 3)] \mathrm{A}\). The current will be maximum for the first time at, (a) \(\mathrm{t}=(1 / 100) \mathrm{sec}\) (b) \(\mathrm{t}=(1 / 200) \mathrm{sec}\) (c) \(t=(1 / 400) \mathrm{sec}\) (d) \(t=(1 / 600) \mathrm{sec}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free