Chapter 14: Problem 2084
The value of alternating emf \(E\) in the given ckt will be. (a) \(100 \mathrm{~V}\) (b) \(20 \mathrm{~V}\) (c) \(220 \mathrm{~V}\) (d) \(140 \mathrm{~V}\)
Chapter 14: Problem 2084
The value of alternating emf \(E\) in the given ckt will be. (a) \(100 \mathrm{~V}\) (b) \(20 \mathrm{~V}\) (c) \(220 \mathrm{~V}\) (d) \(140 \mathrm{~V}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe diagram shows a capacitor \(\mathrm{C}\) and resistor \(\mathrm{R}\) connected in series to an ac source. \(\mathrm{V}_{1}\) and \(\mathrm{V}_{2}\) are voltmeters and \(\mathrm{A}\) is an ammeter, consider the following statements.(a) Readings in \(\mathrm{A}\) and \(\mathrm{V}_{2}\) are always in phase. (b) Reading in \(\mathrm{V}_{1}\) is ahead in phase with reading in \(\mathrm{V}_{2}\). (c) Reading in \(\mathrm{A}\) and \(\mathrm{V}_{1}\) are always in phase. (d) Which of these statements are is correct (a) 1) only (b) 2) only (c) 1 ) and 2) only (d) 2 ) and 3) only
Two coils of self inductances \(2 \mathrm{mH} \& 8 \mathrm{mH}\) are placed so close together that the effective flux in one coil is completely half with the other. The mutual inductance between these coils is...... (a) \(4 \mathrm{mH}\) (b) \(6 \mathrm{mH}\) (c) \(2 \mathrm{mH}\) (d) \(16 \mathrm{mH}\)
In a series resonant LCR circuit, the voltage across \(R\) is \(100 \mathrm{~V}\) and \(\mathrm{R}=1 \mathrm{k} \Omega\) with \(\mathrm{C}=2 \mu \mathrm{F}\). The resonant frequency 0 is \(200 \mathrm{rad} / \mathrm{s}\). At resonance the voltage across \(\mathrm{L}\) is. (a) \(40 \mathrm{~V}\) (b) \(250 \mathrm{~V}\) (c) \(4 \times 10^{-3} \mathrm{~V}\) (d) \(2.5 \times 10^{-2} \mathrm{~V}\)
When 100 volt dc is applied across a coil, a current of \(1 \mathrm{~A}\) flows through it. When 100 volt ac at 50 cycle \(\mathrm{s}^{-1}\) is applied to the same coil, only \(0.5\) A current flows. The impedance of the coil is, (a) \(100 \Omega\) (b) \(200 \Omega\) (c) \(300 \Omega\) (d) \(400 \Omega\)
The impedance of a circuit consists of \(3 \Omega\) resistance and \(4 \Omega\) reactance. The power factor of the circuit is. (a) \(0.4\) (b) \(0.6\) (c) \(0.8\) (d) \(1.0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.