Chapter 14: Problem 2053
The core of a transformer is laminated so that...... (a) Ratio of I/ \(p\) \& O/p voltage increases (b) Rusting of core may be stopped (c) Energy loss due to eddy current may be reduced (d) Change in flux is increased
Chapter 14: Problem 2053
The core of a transformer is laminated so that...... (a) Ratio of I/ \(p\) \& O/p voltage increases (b) Rusting of core may be stopped (c) Energy loss due to eddy current may be reduced (d) Change in flux is increased
All the tools & learning materials you need for study success - in one app.
Get started for freeAn alternating voltage \(\mathrm{E}=200 \sqrt{2} \sin (100 \mathrm{t})\) is connected to 1 microfarad capacitor through an ac ammeter. The reading of the ammeter shall be. $\begin{array}{llll}\text { (a) } 10 \mathrm{~mA} & \text { (b) } 20 \mathrm{~mA} & \text { (c) } 40 \mathrm{~mA} & \text { (d) } 80 \mathrm{~mA}\end{array}$
The self inductance of a coil is \(5 \mathrm{H}\), a current of \(1 \mathrm{~A}\) changes to \(2 \mathrm{~A}\) within \(5 \mathrm{sec}\). through the coil. The value of induced emf will be \(\ldots \ldots\) (a) \(10 \mathrm{~V}\) (b) \(0.1 \mathrm{~V}\) (c) \(1 \mathrm{~V}\) (d) \(100 \mathrm{~V}\)
The instantaneous voltage through a device of impedance \(20 \Omega\) is \(\varepsilon=80 \sin 100 \pi t\). The effective value of the current is, (a) \(3 \mathrm{~A}\) (b) \(2.828 \mathrm{~A}\) (c) \(1.732 \mathrm{~A}\) (d) \(4 \mathrm{~A}\)
The power factor of an ac circuit having resistance \((\mathrm{R})\) and inductance (L) connected in series and an angular velocity w is, (a) \((\mathrm{R} / \mathrm{cL})\) (b) $\left[\mathrm{R} /\left\\{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}\right\\}^{(1 / 2)}\right]$ (c) \((\omega L / R)\) (d) $\left[\mathrm{R} /\left\\{\mathrm{R}^{2}-\omega^{2} \mathrm{~L}^{2}\right\\}^{(1 / 2)}\right]$
A conducting rod \(P Q\) of length \(4 \ell\) is rotated about a point \(O\) in a uniform magnetic field \(\mathrm{B} \rightarrow \mathrm{PO}=\ell\) Then (a) $\mathrm{V}_{\mathrm{Q}}-\mathrm{V}_{\mathrm{P}}=-\left[\left\\{\mathrm{B} \omega \ell^{2}\right\\} /\right.$ \(\\{2\\}] \quad\) (b) $\mathrm{V}_{\mathrm{Q}}-\mathrm{V}_{\mathrm{O}}=(5 / 2) \mathrm{B} \operatorname{co} \ell^{2}$ (c) $\mathrm{V}_{Q}-\mathrm{V}_{\mathrm{O}}=(9 / 2) \mathrm{B} \omega \ell^{2}$ (d) $\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{Q}}=4 \mathrm{~B} \omega \ell^{2}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.