Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The coercively of a bar magnet is \(100 \mathrm{~A} / \mathrm{m}\). It is to be diamagnetism by placing it inside a solenoid of length \(100 \mathrm{~cm}\) and number of turns 50 . The current flowing through the solenoid will be (a) \(4 \mathrm{~A}\) (b) \(2 \mathrm{~A}\) (c) \(1 \mathrm{~A}\) (d) Zero

Short Answer

Expert verified
The current flowing through the solenoid for diamagnetism is \(2 \mathrm{~A}\), which corresponds to option (b).

Step by step solution

01

Write down the given values

The given values are: Coercivity of the bar magnet \(H_{c} = 100 \mathrm{~A}\) \(/\) \(\mathrm{m}\), Length of the solenoid \(l = 100 \mathrm{~cm}\) \(= 1 \mathrm{~meter}\) (converting to meters), Number of turns of the solenoid \(N = 50\).
02

Use the coercive field formula

The coercive field formula is \(H_{c} = NI / l\). We can solve this formula for the current \(I\): \(I = \frac{H_{c} \cdot l}{N}\)
03

Substitute the given values in the formula

Now insert the given values into the formula to find the current \(I\): \(I = \frac{(100 \mathrm{~A} / \mathrm{m}) \cdot (1 \mathrm{~m})}{50}\)
04

Calculate the current

Simplify the expression to get the current \(I\): \(I = \frac{100 \mathrm{~A}}{50} = 2 \mathrm{~A}\) The current flowing through the solenoid for diamagnetism is \(2 \mathrm{~A}\), which corresponds to option (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A magnet of magnetic moment \(\mathrm{M}\) and pole strength \(\mathrm{m}\) is divided in two equal parts, then magnetic moment of each part will be (a) \(\mathrm{M}\) (b) \((\mathrm{M} / 2)\) (c) \((\mathrm{M} / 4)\) (d) \(2 \mathrm{M}\)

Graph of force per unit length between two long parallel current carrying conductors and the distance between them (a) Straight line (b) Parabola (c) Ellipse (d) Rectangular hyperbola

An electron having mass \(9 \times 10^{-31} \mathrm{~kg}\), charge $1.6 \times 10^{-19} \mathrm{C}\( and moving with a velocity of \)10^{6} \mathrm{~m} / \mathrm{s}$ enters a region where mag. field exists. If it describes a circle of radius \(0.10 \mathrm{~m}\), the intensity of magnetic field must be Tesla (a) \(1.8 \times 10^{-4}\) (b) \(5.6 \times \overline{10^{-5}}\) (c) \(14.4 \times 10^{-5}\) (d) \(1.3 \times 10^{-6}\)

An element \(\mathrm{d} \ell^{-}=\mathrm{dx} \uparrow\) (where $\mathrm{dx}=1 \mathrm{~cm}$ ) is placed at the origin and carries a large current \(\mathrm{I}=10 \mathrm{Amp}\). What is the mag. field on the Y-axis at a distance of \(0.5\) meter ? (a) \(2 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (b) \(4 \times 10^{8} \mathrm{k} \wedge \mathrm{T}\) (c) \(-2 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (d) \(-4 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\)

\(\mathrm{A}\) bar magnet of length \(10 \mathrm{~cm}\) and having the pole strength equal \(10^{3} \mathrm{Am}\) to is kept in a magnetic field having magnetic induction (B) equal to \(4 \pi \times 10^{3}\) tesla. It makes an angle of \(30^{\circ}\) with the direction of magnetic induction. The value of the torque acting on the magnet is Joule. (a) \(2 \pi \times 10^{-7}\) (b) \(2 \pi \times 10^{5}\) (c) \(0.5\) (d) \(0.5 \times 10^{2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free