Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When 2 Amp current is passed through a tangent galvanometer. It gives a deflection of \(30^{\circ} .\) For \(60^{\circ}\) deflection, the current must be (a) \(1 \mathrm{Amp}\) (b) \(2 \sqrt{3 a m p}\) (c) \(4 \mathrm{amp}\) (d) \(6 \mathrm{Amp}\)

Short Answer

Expert verified
The current required for a \(60^{\circ}\) deflection in a tangent galvanometer is \(2\sqrt{3}Amp\).

Step by step solution

01

Understand the tangent galvanometer

A tangent galvanometer is an instrument used to measure the current by the deflection of a magnetic needle. The current flowing through the coil of the galvanometer creates a magnetic field, causing the needle to deflect. The deflection angle is proportional to the strength of the current.
02

Derive the relationship between current and deflection angle

In a tangent galvanometer, the tangent of the deflection angle is directly proportional to the current. This can be represented as: \( \tan\theta=kI \) where: θ = deflection angle I = current k = a constant For our given problem, we have a deflection angle of 30° corresponding to a current of 2 Amps.
03

Determine the constant k

To find the value of k, we can use the initial data provided in the problem: \( \tan30^{\circ}= k(2) \) \( \frac{1}{\sqrt{3}}=2k \) Solve for k: \( k =\frac {1}{2\sqrt{3}} \)
04

Calculate the current for the 60° deflection

Now we can use the equation we derived earlier to find the current corresponding to a 60° deflection: \( \tan60^{\circ}= kI \) Use the value of k we found previously: \( \sqrt{3} = \frac{1}{2\sqrt{3}}I \) Solve for I: \( I = 2\sqrt{3}Amps \)
05

Choose the correct answer

The current for a 60° deflection is 2√3 Amp. The correct answer is: (b) \(2\sqrt{3}Amp\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two thin long parallel wires separated by a distance \(\mathrm{y}\) are carrying a current I Amp each. The magnitude of the force per unit length exerted by one wire on other is (a) \(\left[\left(\mu_{0} I^{2}\right) / y^{2}\right]\) (b) \(\left[\left(\mu_{o} I^{2}\right) /(2 \pi \mathrm{y})\right]\) (c) \(\left[\left(\mu_{0}\right) /(2 \pi)\right](1 / y)\) (d) $\left[\left(\mu_{0}\right) /(2 \pi)\right]\left(1 / \mathrm{y}^{2}\right)$

The effective length of a magnet is \(31.4 \mathrm{~cm}\) and its pole strength is \(0.5 \mathrm{~A} \mathrm{~m}\). The magnetic moment, if it is bent in the form of a semicircle will be Amp.m \(^{2}\) (a) \(0.1\) (b) \(0.01\) (c) \(0.2\) (d) \(1.2\)

A long wire carr1es a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the coil is \(\mathrm{B}\). It is then bent into a circular Loop of n turns. The magnetic field at the centre of the coil for same current will be. (a) \(\mathrm{nB}\) (b) \(\mathrm{n}^{2} \mathrm{~B}\) (c) \(2 \mathrm{nB}\) (d) \(2 \mathrm{n}^{2} \mathrm{~B}\)

Two parallel long wires \(\mathrm{A}\) and B carry currents \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\). \(\left(\mathrm{I}_{2}<\mathrm{I}_{1}\right)\) when \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) are in the same direction the mag. field at a point mid way between the wires is \(10 \mu \mathrm{T}\). If \(\mathrm{I}_{2}\) is reversed, the field becomes \(30 \mu \mathrm{T}\). The ratio \(\left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)\) is (a) 1 (b) 2 (c) 3 (d) 4

In each of the following questions, Match column-I and column-II and select the correct match out of the four given choices.(B) Ammeter (Q) Moderate resistance (C) Voltmeter (R) High, Low or moderate resistance (D) Avometer (S) High resistance (a) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (b) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$ (c) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (d) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free