Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A small bar magnet of moment \(\mathrm{M}\) is placed in a uniform field of \(\mathrm{H}\). If magnet makes an angle of \(30^{\circ}\) with field, the torque acting on the magnet is (a) \(\mathrm{MH}\) (b) \((\mathrm{MH} / 2)\) (c) \((\mathrm{MH} / 3)\) (d) \((\mathrm{MH} / 4)\)

Short Answer

Expert verified
The torque acting on the magnet is \(\frac{MH}{2}\).

Step by step solution

01

Identify the given values.

The information given is: - Magnetic moment, M - Magnetic field, H - Angle between the magnet and the field, θ = 30°
02

Apply the formula for torque.

The formula for torque acting on the magnetic dipole in a magnetic field is: τ = MH sin(θ) Plug in the given values: τ = M * H * sin(30°)
03

Calculate the sin value.

To find the torque, we first need to calculate the value of sin(30°). Using the sine function: sin(30°) = 1 / 2
04

Calculate the torque.

Now, substitute the sin value back into the equation: τ = M * H * (1 / 2) Simplify the equation: τ = (MH) / 2
05

Compare the result with the given options.

We have found that the torque acting on the magnet is (MH) / 2. This matches the option (b). Therefore, the correct answer is: (b) (MH / 2)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Force between two identical bar magnets whose centers are I meter apart is \(4.8 \mathrm{~N}\), when their axes are in the same line. If separation is increased to \(2 r\), the force between them is reduced to (a) \(2.4 \mathrm{~N}\) (b) \(1.2 \mathrm{~N}\) (c) \(0.6 \mathrm{~N}\) (d) \(0.3 \mathrm{~N}\)

Magnetic intensity for an axial point due to a short bar magnet of magnetic moment \(\mathrm{M}\) is given by (a) \(\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)\) (b) \(\left(\mu_{0} / 4 \pi\right)\left(\mathrm{M} / \mathrm{d}^{2}\right)\) (c) \(\left(\mu_{0} / 2 \pi\right)\left(\mathrm{M} / \mathrm{d}^{3}\right)\) (d) \(\left(\mu_{0} / 2 \pi\right)\left(\mathrm{M} / \mathrm{d}^{2}\right)\)

A long horizontal wire " \(\mathrm{A}^{\prime \prime}\) carries a current of $50 \mathrm{Amp}$. It is rigidly fixed. Another small wire "B" is placed just above and parallel to " \(\mathrm{A}^{\prime \prime}\). The weight of wire- \(\mathrm{B}\) per unit length is \(75 \times 10^{-3}\) Newton/meter and carries a current of 25 Amp. Find the position of wire \(B\) from \(A\) so that wire \(B\) remains suspended due to magnetic repulsion. Also indicate the direction of current in \(B\) w.r.t. to \(A\).(a) \((1 / 2) \times 10^{-2} \mathrm{~m}\); in same direction (b) \((1 / 3) \times 10^{-2} \mathrm{~m}\); in mutually opposite direction (c) \((1 / 4) \times 10^{-2} \mathrm{~m}\); in same direction (d) \((1 / 5) \times 10^{-2} \mathrm{~m}\); in mutually opposite direction

0: Due to 10 Amp of current flowing in a circular coil of \(10 \mathrm{~cm}\) radius, the mag. field produced at its centre is \(\pi \times 10^{-3}\) Tesla. The number of turns in the coil will be (a) 5000 (b) 100 (c) 50 (d) 25

A straight wire of mass \(200 \mathrm{gm}\) and length \(1.5\) meter carries a current of 2 Amp. It is suspended in mid-air by a uniform horizontal magnetic field B. [take \(\left.\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]\). The \(\mathrm{B}\) is (a) \(\overline{(2 / 3) \text { tes } 1 a}\) (b) \((3 / 2)\) tesla (c) \((20 / 3)\) tesla (d) (3/20) tesla

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free