Chapter 13: Problem 1943
A magnetic field \(B^{-}=\) Bo \(j \wedge\) exists in the region \(a
Chapter 13: Problem 1943
A magnetic field \(B^{-}=\) Bo \(j \wedge\) exists in the region \(a
All the tools & learning materials you need for study success - in one app.
Get started for freeIf a magnet of pole strength \(\mathrm{m}\) is divided into four parts such that the length and width of each part is half that of initial one, then the pole strength of each part will be (a) \((\mathrm{m} / 4)\) (b) \((\mathrm{m} / 2)\) (c) \((\mathrm{m} / 8)\) (d) \(4 \mathrm{~m}\)
The coercively of a bar magnet is \(100 \mathrm{~A} / \mathrm{m}\). It is to be diamagnetism by placing it inside a solenoid of length \(100 \mathrm{~cm}\) and number of turns 50 . The current flowing through the solenoid will be (a) \(4 \mathrm{~A}\) (b) \(2 \mathrm{~A}\) (c) \(1 \mathrm{~A}\) (d) Zero
The strength of the magnetic field at a point \(\mathrm{y}\) near a long straight current carrying wire is \(\mathrm{B}\). The field at a distance \(\mathrm{y} / 2\) will be (a) B/2 (b) B \(/ 4\) (c) \(2 \mathrm{~B}\) (d) \(4 \mathrm{~B}\)
A long wire carr1es a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the coil is \(\mathrm{B}\). It is then bent into a circular Loop of n turns. The magnetic field at the centre of the coil for same current will be. (a) \(\mathrm{nB}\) (b) \(\mathrm{n}^{2} \mathrm{~B}\) (c) \(2 \mathrm{nB}\) (d) \(2 \mathrm{n}^{2} \mathrm{~B}\)
The angles of dip at two places are \(30^{\circ}\) and \(45^{\circ}\). The ratio of horizontal components of earth's magnetic field at the two places will be (a) \(\sqrt{3}: \sqrt{2}\) (b) \(1: \sqrt{2}\) (c) \(1: 2\) (d) \(1: \sqrt{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.